1       SUBROUTINE DSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
  2 *     .. Scalar Arguments ..
  3       DOUBLE PRECISION ALPHA,BETA
  4       INTEGER LDA,LDB,LDC,M,N
  5       CHARACTER SIDE,UPLO
  6 *     ..
  7 *     .. Array Arguments ..
  8       DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*)
  9 *     ..
 10 *
 11 *  Purpose
 12 *  =======
 13 *
 14 *  DSYMM  performs one of the matrix-matrix operations
 15 *
 16 *     C := alpha*A*B + beta*C,
 17 *
 18 *  or
 19 *
 20 *     C := alpha*B*A + beta*C,
 21 *
 22 *  where alpha and beta are scalars,  A is a symmetric matrix and  B and
 23 *  C are  m by n matrices.
 24 *
 25 *  Arguments
 26 *  ==========
 27 *
 28 *  SIDE   - CHARACTER*1.
 29 *           On entry,  SIDE  specifies whether  the  symmetric matrix  A
 30 *           appears on the  left or right  in the  operation as follows:
 31 *
 32 *              SIDE = 'L' or 'l'   C := alpha*A*B + beta*C,
 33 *
 34 *              SIDE = 'R' or 'r'   C := alpha*B*A + beta*C,
 35 *
 36 *           Unchanged on exit.
 37 *
 38 *  UPLO   - CHARACTER*1.
 39 *           On  entry,   UPLO  specifies  whether  the  upper  or  lower
 40 *           triangular  part  of  the  symmetric  matrix   A  is  to  be
 41 *           referenced as follows:
 42 *
 43 *              UPLO = 'U' or 'u'   Only the upper triangular part of the
 44 *                                  symmetric matrix is to be referenced.
 45 *
 46 *              UPLO = 'L' or 'l'   Only the lower triangular part of the
 47 *                                  symmetric matrix is to be referenced.
 48 *
 49 *           Unchanged on exit.
 50 *
 51 *  M      - INTEGER.
 52 *           On entry,  M  specifies the number of rows of the matrix  C.
 53 *           M  must be at least zero.
 54 *           Unchanged on exit.
 55 *
 56 *  N      - INTEGER.
 57 *           On entry, N specifies the number of columns of the matrix C.
 58 *           N  must be at least zero.
 59 *           Unchanged on exit.
 60 *
 61 *  ALPHA  - DOUBLE PRECISION.
 62 *           On entry, ALPHA specifies the scalar alpha.
 63 *           Unchanged on exit.
 64 *
 65 *  A      - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
 66 *           m  when  SIDE = 'L' or 'l'  and is  n otherwise.
 67 *           Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of
 68 *           the array  A  must contain the  symmetric matrix,  such that
 69 *           when  UPLO = 'U' or 'u', the leading m by m upper triangular
 70 *           part of the array  A  must contain the upper triangular part
 71 *           of the  symmetric matrix and the  strictly  lower triangular
 72 *           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
 73 *           the leading  m by m  lower triangular part  of the  array  A
 74 *           must  contain  the  lower triangular part  of the  symmetric
 75 *           matrix and the  strictly upper triangular part of  A  is not
 76 *           referenced.
 77 *           Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of
 78 *           the array  A  must contain the  symmetric matrix,  such that
 79 *           when  UPLO = 'U' or 'u', the leading n by n upper triangular
 80 *           part of the array  A  must contain the upper triangular part
 81 *           of the  symmetric matrix and the  strictly  lower triangular
 82 *           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
 83 *           the leading  n by n  lower triangular part  of the  array  A
 84 *           must  contain  the  lower triangular part  of the  symmetric
 85 *           matrix and the  strictly upper triangular part of  A  is not
 86 *           referenced.
 87 *           Unchanged on exit.
 88 *
 89 *  LDA    - INTEGER.
 90 *           On entry, LDA specifies the first dimension of A as declared
 91 *           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
 92 *           LDA must be at least  max( 1, m ), otherwise  LDA must be at
 93 *           least  max( 1, n ).
 94 *           Unchanged on exit.
 95 *
 96 *  B      - DOUBLE PRECISION array of DIMENSION ( LDB, n ).
 97 *           Before entry, the leading  m by n part of the array  B  must
 98 *           contain the matrix B.
 99 *           Unchanged on exit.
100 *
101 *  LDB    - INTEGER.
102 *           On entry, LDB specifies the first dimension of B as declared
103 *           in  the  calling  (sub)  program.   LDB  must  be  at  least
104 *           max( 1, m ).
105 *           Unchanged on exit.
106 *
107 *  BETA   - DOUBLE PRECISION.
108 *           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
109 *           supplied as zero then C need not be set on input.
110 *           Unchanged on exit.
111 *
112 *  C      - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
113 *           Before entry, the leading  m by n  part of the array  C must
114 *           contain the matrix  C,  except when  beta  is zero, in which
115 *           case C need not be set on entry.
116 *           On exit, the array  C  is overwritten by the  m by n updated
117 *           matrix.
118 *
119 *  LDC    - INTEGER.
120 *           On entry, LDC specifies the first dimension of C as declared
121 *           in  the  calling  (sub)  program.   LDC  must  be  at  least
122 *           max( 1, m ).
123 *           Unchanged on exit.
124 *
125 *  Further Details
126 *  ===============
127 *
128 *  Level 3 Blas routine.
129 *
130 *  -- Written on 8-February-1989.
131 *     Jack Dongarra, Argonne National Laboratory.
132 *     Iain Duff, AERE Harwell.
133 *     Jeremy Du Croz, Numerical Algorithms Group Ltd.
134 *     Sven Hammarling, Numerical Algorithms Group Ltd.
135 *
136 *  =====================================================================
137 *
138 *     .. External Functions ..
139       LOGICAL LSAME
140       EXTERNAL LSAME
141 *     ..
142 *     .. External Subroutines ..
143       EXTERNAL XERBLA
144 *     ..
145 *     .. Intrinsic Functions ..
146       INTRINSIC MAX
147 *     ..
148 *     .. Local Scalars ..
149       DOUBLE PRECISION TEMP1,TEMP2
150       INTEGER I,INFO,J,K,NROWA
151       LOGICAL UPPER
152 *     ..
153 *     .. Parameters ..
154       DOUBLE PRECISION ONE,ZERO
155       PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
156 *     ..
157 *
158 *     Set NROWA as the number of rows of A.
159 *
160       IF (LSAME(SIDE,'L')) THEN
161           NROWA = M
162       ELSE
163           NROWA = N
164       END IF
165       UPPER = LSAME(UPLO,'U')
166 *
167 *     Test the input parameters.
168 *
169       INFO = 0
170       IF ((.NOT.LSAME(SIDE,'L')) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
171           INFO = 1
172       ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
173           INFO = 2
174       ELSE IF (M.LT.0THEN
175           INFO = 3
176       ELSE IF (N.LT.0THEN
177           INFO = 4
178       ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
179           INFO = 7
180       ELSE IF (LDB.LT.MAX(1,M)) THEN
181           INFO = 9
182       ELSE IF (LDC.LT.MAX(1,M)) THEN
183           INFO = 12
184       END IF
185       IF (INFO.NE.0THEN
186           CALL XERBLA('DSYMM ',INFO)
187           RETURN
188       END IF
189 *
190 *     Quick return if possible.
191 *
192       IF ((M.EQ.0.OR. (N.EQ.0.OR.
193      +    ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
194 *
195 *     And when  alpha.eq.zero.
196 *
197       IF (ALPHA.EQ.ZERO) THEN
198           IF (BETA.EQ.ZERO) THEN
199               DO 20 J = 1,N
200                   DO 10 I = 1,M
201                       C(I,J) = ZERO
202    10             CONTINUE
203    20         CONTINUE
204           ELSE
205               DO 40 J = 1,N
206                   DO 30 I = 1,M
207                       C(I,J) = BETA*C(I,J)
208    30             CONTINUE
209    40         CONTINUE
210           END IF
211           RETURN
212       END IF
213 *
214 *     Start the operations.
215 *
216       IF (LSAME(SIDE,'L')) THEN
217 *
218 *        Form  C := alpha*A*B + beta*C.
219 *
220           IF (UPPER) THEN
221               DO 70 J = 1,N
222                   DO 60 I = 1,M
223                       TEMP1 = ALPHA*B(I,J)
224                       TEMP2 = ZERO
225                       DO 50 K = 1,I - 1
226                           C(K,J) = C(K,J) + TEMP1*A(K,I)
227                           TEMP2 = TEMP2 + B(K,J)*A(K,I)
228    50                 CONTINUE
229                       IF (BETA.EQ.ZERO) THEN
230                           C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2
231                       ELSE
232                           C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) +
233      +                             ALPHA*TEMP2
234                       END IF
235    60             CONTINUE
236    70         CONTINUE
237           ELSE
238               DO 100 J = 1,N
239                   DO 90 I = M,1,-1
240                       TEMP1 = ALPHA*B(I,J)
241                       TEMP2 = ZERO
242                       DO 80 K = I + 1,M
243                           C(K,J) = C(K,J) + TEMP1*A(K,I)
244                           TEMP2 = TEMP2 + B(K,J)*A(K,I)
245    80                 CONTINUE
246                       IF (BETA.EQ.ZERO) THEN
247                           C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2
248                       ELSE
249                           C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) +
250      +                             ALPHA*TEMP2
251                       END IF
252    90             CONTINUE
253   100         CONTINUE
254           END IF
255       ELSE
256 *
257 *        Form  C := alpha*B*A + beta*C.
258 *
259           DO 170 J = 1,N
260               TEMP1 = ALPHA*A(J,J)
261               IF (BETA.EQ.ZERO) THEN
262                   DO 110 I = 1,M
263                       C(I,J) = TEMP1*B(I,J)
264   110             CONTINUE
265               ELSE
266                   DO 120 I = 1,M
267                       C(I,J) = BETA*C(I,J) + TEMP1*B(I,J)
268   120             CONTINUE
269               END IF
270               DO 140 K = 1,J - 1
271                   IF (UPPER) THEN
272                       TEMP1 = ALPHA*A(K,J)
273                   ELSE
274                       TEMP1 = ALPHA*A(J,K)
275                   END IF
276                   DO 130 I = 1,M
277                       C(I,J) = C(I,J) + TEMP1*B(I,K)
278   130             CONTINUE
279   140         CONTINUE
280               DO 160 K = J + 1,N
281                   IF (UPPER) THEN
282                       TEMP1 = ALPHA*A(J,K)
283                   ELSE
284                       TEMP1 = ALPHA*A(K,J)
285                   END IF
286                   DO 150 I = 1,M
287                       C(I,J) = C(I,J) + TEMP1*B(I,K)
288   150             CONTINUE
289   160         CONTINUE
290   170     CONTINUE
291       END IF
292 *
293       RETURN
294 *
295 *     End of DSYMM .
296 *
297       END