1       SUBROUTINE DSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
  2 *     .. Scalar Arguments ..
  3       DOUBLE PRECISION ALPHA,BETA
  4       INTEGER K,LDA,LDC,N
  5       CHARACTER TRANS,UPLO
  6 *     ..
  7 *     .. Array Arguments ..
  8       DOUBLE PRECISION A(LDA,*),C(LDC,*)
  9 *     ..
 10 *
 11 *  Purpose
 12 *  =======
 13 *
 14 *  DSYRK  performs one of the symmetric rank k operations
 15 *
 16 *     C := alpha*A*A**T + beta*C,
 17 *
 18 *  or
 19 *
 20 *     C := alpha*A**T*A + beta*C,
 21 *
 22 *  where  alpha and beta  are scalars, C is an  n by n  symmetric matrix
 23 *  and  A  is an  n by k  matrix in the first case and a  k by n  matrix
 24 *  in the second case.
 25 *
 26 *  Arguments
 27 *  ==========
 28 *
 29 *  UPLO   - CHARACTER*1.
 30 *           On  entry,   UPLO  specifies  whether  the  upper  or  lower
 31 *           triangular  part  of the  array  C  is to be  referenced  as
 32 *           follows:
 33 *
 34 *              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
 35 *                                  is to be referenced.
 36 *
 37 *              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
 38 *                                  is to be referenced.
 39 *
 40 *           Unchanged on exit.
 41 *
 42 *  TRANS  - CHARACTER*1.
 43 *           On entry,  TRANS  specifies the operation to be performed as
 44 *           follows:
 45 *
 46 *              TRANS = 'N' or 'n'   C := alpha*A*A**T + beta*C.
 47 *
 48 *              TRANS = 'T' or 't'   C := alpha*A**T*A + beta*C.
 49 *
 50 *              TRANS = 'C' or 'c'   C := alpha*A**T*A + beta*C.
 51 *
 52 *           Unchanged on exit.
 53 *
 54 *  N      - INTEGER.
 55 *           On entry,  N specifies the order of the matrix C.  N must be
 56 *           at least zero.
 57 *           Unchanged on exit.
 58 *
 59 *  K      - INTEGER.
 60 *           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
 61 *           of  columns   of  the   matrix   A,   and  on   entry   with
 62 *           TRANS = 'T' or 't' or 'C' or 'c',  K  specifies  the  number
 63 *           of rows of the matrix  A.  K must be at least zero.
 64 *           Unchanged on exit.
 65 *
 66 *  ALPHA  - DOUBLE PRECISION.
 67 *           On entry, ALPHA specifies the scalar alpha.
 68 *           Unchanged on exit.
 69 *
 70 *  A      - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
 71 *           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
 72 *           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
 73 *           part of the array  A  must contain the matrix  A,  otherwise
 74 *           the leading  k by n  part of the array  A  must contain  the
 75 *           matrix A.
 76 *           Unchanged on exit.
 77 *
 78 *  LDA    - INTEGER.
 79 *           On entry, LDA specifies the first dimension of A as declared
 80 *           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
 81 *           then  LDA must be at least  max( 1, n ), otherwise  LDA must
 82 *           be at least  max( 1, k ).
 83 *           Unchanged on exit.
 84 *
 85 *  BETA   - DOUBLE PRECISION.
 86 *           On entry, BETA specifies the scalar beta.
 87 *           Unchanged on exit.
 88 *
 89 *  C      - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
 90 *           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
 91 *           upper triangular part of the array C must contain the upper
 92 *           triangular part  of the  symmetric matrix  and the strictly
 93 *           lower triangular part of C is not referenced.  On exit, the
 94 *           upper triangular part of the array  C is overwritten by the
 95 *           upper triangular part of the updated matrix.
 96 *           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
 97 *           lower triangular part of the array C must contain the lower
 98 *           triangular part  of the  symmetric matrix  and the strictly
 99 *           upper triangular part of C is not referenced.  On exit, the
100 *           lower triangular part of the array  C is overwritten by the
101 *           lower triangular part of the updated matrix.
102 *
103 *  LDC    - INTEGER.
104 *           On entry, LDC specifies the first dimension of C as declared
105 *           in  the  calling  (sub)  program.   LDC  must  be  at  least
106 *           max( 1, n ).
107 *           Unchanged on exit.
108 *
109 *  Further Details
110 *  ===============
111 *
112 *  Level 3 Blas routine.
113 *
114 *  -- Written on 8-February-1989.
115 *     Jack Dongarra, Argonne National Laboratory.
116 *     Iain Duff, AERE Harwell.
117 *     Jeremy Du Croz, Numerical Algorithms Group Ltd.
118 *     Sven Hammarling, Numerical Algorithms Group Ltd.
119 *
120 *  =====================================================================
121 *
122 *     .. External Functions ..
123       LOGICAL LSAME
124       EXTERNAL LSAME
125 *     ..
126 *     .. External Subroutines ..
127       EXTERNAL XERBLA
128 *     ..
129 *     .. Intrinsic Functions ..
130       INTRINSIC MAX
131 *     ..
132 *     .. Local Scalars ..
133       DOUBLE PRECISION TEMP
134       INTEGER I,INFO,J,L,NROWA
135       LOGICAL UPPER
136 *     ..
137 *     .. Parameters ..
138       DOUBLE PRECISION ONE,ZERO
139       PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
140 *     ..
141 *
142 *     Test the input parameters.
143 *
144       IF (LSAME(TRANS,'N')) THEN
145           NROWA = N
146       ELSE
147           NROWA = K
148       END IF
149       UPPER = LSAME(UPLO,'U')
150 *
151       INFO = 0
152       IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
153           INFO = 1
154       ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND.
155      +         (.NOT.LSAME(TRANS,'T')) .AND.
156      +         (.NOT.LSAME(TRANS,'C'))) THEN
157           INFO = 2
158       ELSE IF (N.LT.0THEN
159           INFO = 3
160       ELSE IF (K.LT.0THEN
161           INFO = 4
162       ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
163           INFO = 7
164       ELSE IF (LDC.LT.MAX(1,N)) THEN
165           INFO = 10
166       END IF
167       IF (INFO.NE.0THEN
168           CALL XERBLA('DSYRK ',INFO)
169           RETURN
170       END IF
171 *
172 *     Quick return if possible.
173 *
174       IF ((N.EQ.0.OR. (((ALPHA.EQ.ZERO).OR.
175      +    (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
176 *
177 *     And when  alpha.eq.zero.
178 *
179       IF (ALPHA.EQ.ZERO) THEN
180           IF (UPPER) THEN
181               IF (BETA.EQ.ZERO) THEN
182                   DO 20 J = 1,N
183                       DO 10 I = 1,J
184                           C(I,J) = ZERO
185    10                 CONTINUE
186    20             CONTINUE
187               ELSE
188                   DO 40 J = 1,N
189                       DO 30 I = 1,J
190                           C(I,J) = BETA*C(I,J)
191    30                 CONTINUE
192    40             CONTINUE
193               END IF
194           ELSE
195               IF (BETA.EQ.ZERO) THEN
196                   DO 60 J = 1,N
197                       DO 50 I = J,N
198                           C(I,J) = ZERO
199    50                 CONTINUE
200    60             CONTINUE
201               ELSE
202                   DO 80 J = 1,N
203                       DO 70 I = J,N
204                           C(I,J) = BETA*C(I,J)
205    70                 CONTINUE
206    80             CONTINUE
207               END IF
208           END IF
209           RETURN
210       END IF
211 *
212 *     Start the operations.
213 *
214       IF (LSAME(TRANS,'N')) THEN
215 *
216 *        Form  C := alpha*A*A**T + beta*C.
217 *
218           IF (UPPER) THEN
219               DO 130 J = 1,N
220                   IF (BETA.EQ.ZERO) THEN
221                       DO 90 I = 1,J
222                           C(I,J) = ZERO
223    90                 CONTINUE
224                   ELSE IF (BETA.NE.ONE) THEN
225                       DO 100 I = 1,J
226                           C(I,J) = BETA*C(I,J)
227   100                 CONTINUE
228                   END IF
229                   DO 120 L = 1,K
230                       IF (A(J,L).NE.ZERO) THEN
231                           TEMP = ALPHA*A(J,L)
232                           DO 110 I = 1,J
233                               C(I,J) = C(I,J) + TEMP*A(I,L)
234   110                     CONTINUE
235                       END IF
236   120             CONTINUE
237   130         CONTINUE
238           ELSE
239               DO 180 J = 1,N
240                   IF (BETA.EQ.ZERO) THEN
241                       DO 140 I = J,N
242                           C(I,J) = ZERO
243   140                 CONTINUE
244                   ELSE IF (BETA.NE.ONE) THEN
245                       DO 150 I = J,N
246                           C(I,J) = BETA*C(I,J)
247   150                 CONTINUE
248                   END IF
249                   DO 170 L = 1,K
250                       IF (A(J,L).NE.ZERO) THEN
251                           TEMP = ALPHA*A(J,L)
252                           DO 160 I = J,N
253                               C(I,J) = C(I,J) + TEMP*A(I,L)
254   160                     CONTINUE
255                       END IF
256   170             CONTINUE
257   180         CONTINUE
258           END IF
259       ELSE
260 *
261 *        Form  C := alpha*A**T*A + beta*C.
262 *
263           IF (UPPER) THEN
264               DO 210 J = 1,N
265                   DO 200 I = 1,J
266                       TEMP = ZERO
267                       DO 190 L = 1,K
268                           TEMP = TEMP + A(L,I)*A(L,J)
269   190                 CONTINUE
270                       IF (BETA.EQ.ZERO) THEN
271                           C(I,J) = ALPHA*TEMP
272                       ELSE
273                           C(I,J) = ALPHA*TEMP + BETA*C(I,J)
274                       END IF
275   200             CONTINUE
276   210         CONTINUE
277           ELSE
278               DO 240 J = 1,N
279                   DO 230 I = J,N
280                       TEMP = ZERO
281                       DO 220 L = 1,K
282                           TEMP = TEMP + A(L,I)*A(L,J)
283   220                 CONTINUE
284                       IF (BETA.EQ.ZERO) THEN
285                           C(I,J) = ALPHA*TEMP
286                       ELSE
287                           C(I,J) = ALPHA*TEMP + BETA*C(I,J)
288                       END IF
289   230             CONTINUE
290   240         CONTINUE
291           END IF
292       END IF
293 *
294       RETURN
295 *
296 *     End of DSYRK .
297 *
298       END