1       SUBROUTINE DTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
  2 *     .. Scalar Arguments ..
  3       INTEGER INCX,LDA,N
  4       CHARACTER DIAG,TRANS,UPLO
  5 *     ..
  6 *     .. Array Arguments ..
  7       DOUBLE PRECISION A(LDA,*),X(*)
  8 *     ..
  9 *
 10 *  Purpose
 11 *  =======
 12 *
 13 *  DTRSV  solves one of the systems of equations
 14 *
 15 *     A*x = b,   or   A**T*x = b,
 16 *
 17 *  where b and x are n element vectors and A is an n by n unit, or
 18 *  non-unit, upper or lower triangular matrix.
 19 *
 20 *  No test for singularity or near-singularity is included in this
 21 *  routine. Such tests must be performed before calling this routine.
 22 *
 23 *  Arguments
 24 *  ==========
 25 *
 26 *  UPLO   - CHARACTER*1.
 27 *           On entry, UPLO specifies whether the matrix is an upper or
 28 *           lower triangular matrix as follows:
 29 *
 30 *              UPLO = 'U' or 'u'   A is an upper triangular matrix.
 31 *
 32 *              UPLO = 'L' or 'l'   A is a lower triangular matrix.
 33 *
 34 *           Unchanged on exit.
 35 *
 36 *  TRANS  - CHARACTER*1.
 37 *           On entry, TRANS specifies the equations to be solved as
 38 *           follows:
 39 *
 40 *              TRANS = 'N' or 'n'   A*x = b.
 41 *
 42 *              TRANS = 'T' or 't'   A**T*x = b.
 43 *
 44 *              TRANS = 'C' or 'c'   A**T*x = b.
 45 *
 46 *           Unchanged on exit.
 47 *
 48 *  DIAG   - CHARACTER*1.
 49 *           On entry, DIAG specifies whether or not A is unit
 50 *           triangular as follows:
 51 *
 52 *              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
 53 *
 54 *              DIAG = 'N' or 'n'   A is not assumed to be unit
 55 *                                  triangular.
 56 *
 57 *           Unchanged on exit.
 58 *
 59 *  N      - INTEGER.
 60 *           On entry, N specifies the order of the matrix A.
 61 *           N must be at least zero.
 62 *           Unchanged on exit.
 63 *
 64 *  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
 65 *           Before entry with  UPLO = 'U' or 'u', the leading n by n
 66 *           upper triangular part of the array A must contain the upper
 67 *           triangular matrix and the strictly lower triangular part of
 68 *           A is not referenced.
 69 *           Before entry with UPLO = 'L' or 'l', the leading n by n
 70 *           lower triangular part of the array A must contain the lower
 71 *           triangular matrix and the strictly upper triangular part of
 72 *           A is not referenced.
 73 *           Note that when  DIAG = 'U' or 'u', the diagonal elements of
 74 *           A are not referenced either, but are assumed to be unity.
 75 *           Unchanged on exit.
 76 *
 77 *  LDA    - INTEGER.
 78 *           On entry, LDA specifies the first dimension of A as declared
 79 *           in the calling (sub) program. LDA must be at least
 80 *           max( 1, n ).
 81 *           Unchanged on exit.
 82 *
 83 *  X      - DOUBLE PRECISION array of dimension at least
 84 *           ( 1 + ( n - 1 )*abs( INCX ) ).
 85 *           Before entry, the incremented array X must contain the n
 86 *           element right-hand side vector b. On exit, X is overwritten
 87 *           with the solution vector x.
 88 *
 89 *  INCX   - INTEGER.
 90 *           On entry, INCX specifies the increment for the elements of
 91 *           X. INCX must not be zero.
 92 *           Unchanged on exit.
 93 *
 94 *
 95 *  Level 2 Blas routine.
 96 *
 97 *  -- Written on 22-October-1986.
 98 *     Jack Dongarra, Argonne National Lab.
 99 *     Jeremy Du Croz, Nag Central Office.
100 *     Sven Hammarling, Nag Central Office.
101 *     Richard Hanson, Sandia National Labs.
102 *
103 *  =====================================================================
104 *
105 *     .. Parameters ..
106       DOUBLE PRECISION ZERO
107       PARAMETER (ZERO=0.0D+0)
108 *     ..
109 *     .. Local Scalars ..
110       DOUBLE PRECISION TEMP
111       INTEGER I,INFO,IX,J,JX,KX
112       LOGICAL NOUNIT
113 *     ..
114 *     .. External Functions ..
115       LOGICAL LSAME
116       EXTERNAL LSAME
117 *     ..
118 *     .. External Subroutines ..
119       EXTERNAL XERBLA
120 *     ..
121 *     .. Intrinsic Functions ..
122       INTRINSIC MAX
123 *     ..
124 *
125 *     Test the input parameters.
126 *
127       INFO = 0
128       IF (.NOT.LSAME(UPLO,'U'.AND. .NOT.LSAME(UPLO,'L')) THEN
129           INFO = 1
130       ELSE IF (.NOT.LSAME(TRANS,'N'.AND. .NOT.LSAME(TRANS,'T'.AND.
131      +         .NOT.LSAME(TRANS,'C')) THEN
132           INFO = 2
133       ELSE IF (.NOT.LSAME(DIAG,'U'.AND. .NOT.LSAME(DIAG,'N')) THEN
134           INFO = 3
135       ELSE IF (N.LT.0THEN
136           INFO = 4
137       ELSE IF (LDA.LT.MAX(1,N)) THEN
138           INFO = 6
139       ELSE IF (INCX.EQ.0THEN
140           INFO = 8
141       END IF
142       IF (INFO.NE.0THEN
143           CALL XERBLA('DTRSV ',INFO)
144           RETURN
145       END IF
146 *
147 *     Quick return if possible.
148 *
149       IF (N.EQ.0RETURN
150 *
151       NOUNIT = LSAME(DIAG,'N')
152 *
153 *     Set up the start point in X if the increment is not unity. This
154 *     will be  ( N - 1 )*INCX  too small for descending loops.
155 *
156       IF (INCX.LE.0THEN
157           KX = 1 - (N-1)*INCX
158       ELSE IF (INCX.NE.1THEN
159           KX = 1
160       END IF
161 *
162 *     Start the operations. In this version the elements of A are
163 *     accessed sequentially with one pass through A.
164 *
165       IF (LSAME(TRANS,'N')) THEN
166 *
167 *        Form  x := inv( A )*x.
168 *
169           IF (LSAME(UPLO,'U')) THEN
170               IF (INCX.EQ.1THEN
171                   DO 20 J = N,1,-1
172                       IF (X(J).NE.ZERO) THEN
173                           IF (NOUNIT) X(J) = X(J)/A(J,J)
174                           TEMP = X(J)
175                           DO 10 I = J - 1,1,-1
176                               X(I) = X(I) - TEMP*A(I,J)
177    10                     CONTINUE
178                       END IF
179    20             CONTINUE
180               ELSE
181                   JX = KX + (N-1)*INCX
182                   DO 40 J = N,1,-1
183                       IF (X(JX).NE.ZERO) THEN
184                           IF (NOUNIT) X(JX) = X(JX)/A(J,J)
185                           TEMP = X(JX)
186                           IX = JX
187                           DO 30 I = J - 1,1,-1
188                               IX = IX - INCX
189                               X(IX) = X(IX) - TEMP*A(I,J)
190    30                     CONTINUE
191                       END IF
192                       JX = JX - INCX
193    40             CONTINUE
194               END IF
195           ELSE
196               IF (INCX.EQ.1THEN
197                   DO 60 J = 1,N
198                       IF (X(J).NE.ZERO) THEN
199                           IF (NOUNIT) X(J) = X(J)/A(J,J)
200                           TEMP = X(J)
201                           DO 50 I = J + 1,N
202                               X(I) = X(I) - TEMP*A(I,J)
203    50                     CONTINUE
204                       END IF
205    60             CONTINUE
206               ELSE
207                   JX = KX
208                   DO 80 J = 1,N
209                       IF (X(JX).NE.ZERO) THEN
210                           IF (NOUNIT) X(JX) = X(JX)/A(J,J)
211                           TEMP = X(JX)
212                           IX = JX
213                           DO 70 I = J + 1,N
214                               IX = IX + INCX
215                               X(IX) = X(IX) - TEMP*A(I,J)
216    70                     CONTINUE
217                       END IF
218                       JX = JX + INCX
219    80             CONTINUE
220               END IF
221           END IF
222       ELSE
223 *
224 *        Form  x := inv( A**T )*x.
225 *
226           IF (LSAME(UPLO,'U')) THEN
227               IF (INCX.EQ.1THEN
228                   DO 100 J = 1,N
229                       TEMP = X(J)
230                       DO 90 I = 1,J - 1
231                           TEMP = TEMP - A(I,J)*X(I)
232    90                 CONTINUE
233                       IF (NOUNIT) TEMP = TEMP/A(J,J)
234                       X(J) = TEMP
235   100             CONTINUE
236               ELSE
237                   JX = KX
238                   DO 120 J = 1,N
239                       TEMP = X(JX)
240                       IX = KX
241                       DO 110 I = 1,J - 1
242                           TEMP = TEMP - A(I,J)*X(IX)
243                           IX = IX + INCX
244   110                 CONTINUE
245                       IF (NOUNIT) TEMP = TEMP/A(J,J)
246                       X(JX) = TEMP
247                       JX = JX + INCX
248   120             CONTINUE
249               END IF
250           ELSE
251               IF (INCX.EQ.1THEN
252                   DO 140 J = N,1,-1
253                       TEMP = X(J)
254                       DO 130 I = N,J + 1,-1
255                           TEMP = TEMP - A(I,J)*X(I)
256   130                 CONTINUE
257                       IF (NOUNIT) TEMP = TEMP/A(J,J)
258                       X(J) = TEMP
259   140             CONTINUE
260               ELSE
261                   KX = KX + (N-1)*INCX
262                   JX = KX
263                   DO 160 J = N,1,-1
264                       TEMP = X(JX)
265                       IX = KX
266                       DO 150 I = N,J + 1,-1
267                           TEMP = TEMP - A(I,J)*X(IX)
268                           IX = IX - INCX
269   150                 CONTINUE
270                       IF (NOUNIT) TEMP = TEMP/A(J,J)
271                       X(JX) = TEMP
272                       JX = JX - INCX
273   160             CONTINUE
274               END IF
275           END IF
276       END IF
277 *
278       RETURN
279 *
280 *     End of DTRSV .
281 *
282       END