1       SUBROUTINE SSBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
  2 *     .. Scalar Arguments ..
  3       REAL ALPHA,BETA
  4       INTEGER INCX,INCY,K,LDA,N
  5       CHARACTER UPLO
  6 *     ..
  7 *     .. Array Arguments ..
  8       REAL A(LDA,*),X(*),Y(*)
  9 *     ..
 10 *
 11 *  Purpose
 12 *  =======
 13 *
 14 *  SSBMV  performs the matrix-vector  operation
 15 *
 16 *     y := alpha*A*x + beta*y,
 17 *
 18 *  where alpha and beta are scalars, x and y are n element vectors and
 19 *  A is an n by n symmetric band matrix, with k super-diagonals.
 20 *
 21 *  Arguments
 22 *  ==========
 23 *
 24 *  UPLO   - CHARACTER*1.
 25 *           On entry, UPLO specifies whether the upper or lower
 26 *           triangular part of the band matrix A is being supplied as
 27 *           follows:
 28 *
 29 *              UPLO = 'U' or 'u'   The upper triangular part of A is
 30 *                                  being supplied.
 31 *
 32 *              UPLO = 'L' or 'l'   The lower triangular part of A is
 33 *                                  being supplied.
 34 *
 35 *           Unchanged on exit.
 36 *
 37 *  N      - INTEGER.
 38 *           On entry, N specifies the order of the matrix A.
 39 *           N must be at least zero.
 40 *           Unchanged on exit.
 41 *
 42 *  K      - INTEGER.
 43 *           On entry, K specifies the number of super-diagonals of the
 44 *           matrix A. K must satisfy  0 .le. K.
 45 *           Unchanged on exit.
 46 *
 47 *  ALPHA  - REAL            .
 48 *           On entry, ALPHA specifies the scalar alpha.
 49 *           Unchanged on exit.
 50 *
 51 *  A      - REAL             array of DIMENSION ( LDA, n ).
 52 *           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
 53 *           by n part of the array A must contain the upper triangular
 54 *           band part of the symmetric matrix, supplied column by
 55 *           column, with the leading diagonal of the matrix in row
 56 *           ( k + 1 ) of the array, the first super-diagonal starting at
 57 *           position 2 in row k, and so on. The top left k by k triangle
 58 *           of the array A is not referenced.
 59 *           The following program segment will transfer the upper
 60 *           triangular part of a symmetric band matrix from conventional
 61 *           full matrix storage to band storage:
 62 *
 63 *                 DO 20, J = 1, N
 64 *                    M = K + 1 - J
 65 *                    DO 10, I = MAX( 1, J - K ), J
 66 *                       A( M + I, J ) = matrix( I, J )
 67 *              10    CONTINUE
 68 *              20 CONTINUE
 69 *
 70 *           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
 71 *           by n part of the array A must contain the lower triangular
 72 *           band part of the symmetric matrix, supplied column by
 73 *           column, with the leading diagonal of the matrix in row 1 of
 74 *           the array, the first sub-diagonal starting at position 1 in
 75 *           row 2, and so on. The bottom right k by k triangle of the
 76 *           array A is not referenced.
 77 *           The following program segment will transfer the lower
 78 *           triangular part of a symmetric band matrix from conventional
 79 *           full matrix storage to band storage:
 80 *
 81 *                 DO 20, J = 1, N
 82 *                    M = 1 - J
 83 *                    DO 10, I = J, MIN( N, J + K )
 84 *                       A( M + I, J ) = matrix( I, J )
 85 *              10    CONTINUE
 86 *              20 CONTINUE
 87 *
 88 *           Unchanged on exit.
 89 *
 90 *  LDA    - INTEGER.
 91 *           On entry, LDA specifies the first dimension of A as declared
 92 *           in the calling (sub) program. LDA must be at least
 93 *           ( k + 1 ).
 94 *           Unchanged on exit.
 95 *
 96 *  X      - REAL             array of DIMENSION at least
 97 *           ( 1 + ( n - 1 )*abs( INCX ) ).
 98 *           Before entry, the incremented array X must contain the
 99 *           vector x.
100 *           Unchanged on exit.
101 *
102 *  INCX   - INTEGER.
103 *           On entry, INCX specifies the increment for the elements of
104 *           X. INCX must not be zero.
105 *           Unchanged on exit.
106 *
107 *  BETA   - REAL            .
108 *           On entry, BETA specifies the scalar beta.
109 *           Unchanged on exit.
110 *
111 *  Y      - REAL             array of DIMENSION at least
112 *           ( 1 + ( n - 1 )*abs( INCY ) ).
113 *           Before entry, the incremented array Y must contain the
114 *           vector y. On exit, Y is overwritten by the updated vector y.
115 *
116 *  INCY   - INTEGER.
117 *           On entry, INCY specifies the increment for the elements of
118 *           Y. INCY must not be zero.
119 *           Unchanged on exit.
120 *
121 *  Further Details
122 *  ===============
123 *
124 *  Level 2 Blas routine.
125 *  The vector and matrix arguments are not referenced when N = 0, or M = 0
126 *
127 *  -- Written on 22-October-1986.
128 *     Jack Dongarra, Argonne National Lab.
129 *     Jeremy Du Croz, Nag Central Office.
130 *     Sven Hammarling, Nag Central Office.
131 *     Richard Hanson, Sandia National Labs.
132 *
133 *  =====================================================================
134 *
135 *     .. Parameters ..
136       REAL ONE,ZERO
137       PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
138 *     ..
139 *     .. Local Scalars ..
140       REAL TEMP1,TEMP2
141       INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L
142 *     ..
143 *     .. External Functions ..
144       LOGICAL LSAME
145       EXTERNAL LSAME
146 *     ..
147 *     .. External Subroutines ..
148       EXTERNAL XERBLA
149 *     ..
150 *     .. Intrinsic Functions ..
151       INTRINSIC MAX,MIN
152 *     ..
153 *
154 *     Test the input parameters.
155 *
156       INFO = 0
157       IF (.NOT.LSAME(UPLO,'U'.AND. .NOT.LSAME(UPLO,'L')) THEN
158           INFO = 1
159       ELSE IF (N.LT.0THEN
160           INFO = 2
161       ELSE IF (K.LT.0THEN
162           INFO = 3
163       ELSE IF (LDA.LT. (K+1)) THEN
164           INFO = 6
165       ELSE IF (INCX.EQ.0THEN
166           INFO = 8
167       ELSE IF (INCY.EQ.0THEN
168           INFO = 11
169       END IF
170       IF (INFO.NE.0THEN
171           CALL XERBLA('SSBMV ',INFO)
172           RETURN
173       END IF
174 *
175 *     Quick return if possible.
176 *
177       IF ((N.EQ.0.OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
178 *
179 *     Set up the start points in  X  and  Y.
180 *
181       IF (INCX.GT.0THEN
182           KX = 1
183       ELSE
184           KX = 1 - (N-1)*INCX
185       END IF
186       IF (INCY.GT.0THEN
187           KY = 1
188       ELSE
189           KY = 1 - (N-1)*INCY
190       END IF
191 *
192 *     Start the operations. In this version the elements of the array A
193 *     are accessed sequentially with one pass through A.
194 *
195 *     First form  y := beta*y.
196 *
197       IF (BETA.NE.ONE) THEN
198           IF (INCY.EQ.1THEN
199               IF (BETA.EQ.ZERO) THEN
200                   DO 10 I = 1,N
201                       Y(I) = ZERO
202    10             CONTINUE
203               ELSE
204                   DO 20 I = 1,N
205                       Y(I) = BETA*Y(I)
206    20             CONTINUE
207               END IF
208           ELSE
209               IY = KY
210               IF (BETA.EQ.ZERO) THEN
211                   DO 30 I = 1,N
212                       Y(IY) = ZERO
213                       IY = IY + INCY
214    30             CONTINUE
215               ELSE
216                   DO 40 I = 1,N
217                       Y(IY) = BETA*Y(IY)
218                       IY = IY + INCY
219    40             CONTINUE
220               END IF
221           END IF
222       END IF
223       IF (ALPHA.EQ.ZERO) RETURN
224       IF (LSAME(UPLO,'U')) THEN
225 *
226 *        Form  y  when upper triangle of A is stored.
227 *
228           KPLUS1 = K + 1
229           IF ((INCX.EQ.1.AND. (INCY.EQ.1)) THEN
230               DO 60 J = 1,N
231                   TEMP1 = ALPHA*X(J)
232                   TEMP2 = ZERO
233                   L = KPLUS1 - J
234                   DO 50 I = MAX(1,J-K),J - 1
235                       Y(I) = Y(I) + TEMP1*A(L+I,J)
236                       TEMP2 = TEMP2 + A(L+I,J)*X(I)
237    50             CONTINUE
238                   Y(J) = Y(J) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2
239    60         CONTINUE
240           ELSE
241               JX = KX
242               JY = KY
243               DO 80 J = 1,N
244                   TEMP1 = ALPHA*X(JX)
245                   TEMP2 = ZERO
246                   IX = KX
247                   IY = KY
248                   L = KPLUS1 - J
249                   DO 70 I = MAX(1,J-K),J - 1
250                       Y(IY) = Y(IY) + TEMP1*A(L+I,J)
251                       TEMP2 = TEMP2 + A(L+I,J)*X(IX)
252                       IX = IX + INCX
253                       IY = IY + INCY
254    70             CONTINUE
255                   Y(JY) = Y(JY) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2
256                   JX = JX + INCX
257                   JY = JY + INCY
258                   IF (J.GT.K) THEN
259                       KX = KX + INCX
260                       KY = KY + INCY
261                   END IF
262    80         CONTINUE
263           END IF
264       ELSE
265 *
266 *        Form  y  when lower triangle of A is stored.
267 *
268           IF ((INCX.EQ.1.AND. (INCY.EQ.1)) THEN
269               DO 100 J = 1,N
270                   TEMP1 = ALPHA*X(J)
271                   TEMP2 = ZERO
272                   Y(J) = Y(J) + TEMP1*A(1,J)
273                   L = 1 - J
274                   DO 90 I = J + 1,MIN(N,J+K)
275                       Y(I) = Y(I) + TEMP1*A(L+I,J)
276                       TEMP2 = TEMP2 + A(L+I,J)*X(I)
277    90             CONTINUE
278                   Y(J) = Y(J) + ALPHA*TEMP2
279   100         CONTINUE
280           ELSE
281               JX = KX
282               JY = KY
283               DO 120 J = 1,N
284                   TEMP1 = ALPHA*X(JX)
285                   TEMP2 = ZERO
286                   Y(JY) = Y(JY) + TEMP1*A(1,J)
287                   L = 1 - J
288                   IX = JX
289                   IY = JY
290                   DO 110 I = J + 1,MIN(N,J+K)
291                       IX = IX + INCX
292                       IY = IY + INCY
293                       Y(IY) = Y(IY) + TEMP1*A(L+I,J)
294                       TEMP2 = TEMP2 + A(L+I,J)*X(IX)
295   110             CONTINUE
296                   Y(JY) = Y(JY) + ALPHA*TEMP2
297                   JX = JX + INCX
298                   JY = JY + INCY
299   120         CONTINUE
300           END IF
301       END IF
302 *
303       RETURN
304 *
305 *     End of SSBMV .
306 *
307       END