1       SUBROUTINE SSYR2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
  2 *     .. Scalar Arguments ..
  3       REAL ALPHA
  4       INTEGER INCX,INCY,LDA,N
  5       CHARACTER UPLO
  6 *     ..
  7 *     .. Array Arguments ..
  8       REAL A(LDA,*),X(*),Y(*)
  9 *     ..
 10 *
 11 *  Purpose
 12 *  =======
 13 *
 14 *  SSYR2  performs the symmetric rank 2 operation
 15 *
 16 *     A := alpha*x*y**T + alpha*y*x**T + A,
 17 *
 18 *  where alpha is a scalar, x and y are n element vectors and A is an n
 19 *  by n symmetric matrix.
 20 *
 21 *  Arguments
 22 *  ==========
 23 *
 24 *  UPLO   - CHARACTER*1.
 25 *           On entry, UPLO specifies whether the upper or lower
 26 *           triangular part of the array A is to be referenced as
 27 *           follows:
 28 *
 29 *              UPLO = 'U' or 'u'   Only the upper triangular part of A
 30 *                                  is to be referenced.
 31 *
 32 *              UPLO = 'L' or 'l'   Only the lower triangular part of A
 33 *                                  is to be referenced.
 34 *
 35 *           Unchanged on exit.
 36 *
 37 *  N      - INTEGER.
 38 *           On entry, N specifies the order of the matrix A.
 39 *           N must be at least zero.
 40 *           Unchanged on exit.
 41 *
 42 *  ALPHA  - REAL            .
 43 *           On entry, ALPHA specifies the scalar alpha.
 44 *           Unchanged on exit.
 45 *
 46 *  X      - REAL             array of dimension at least
 47 *           ( 1 + ( n - 1 )*abs( INCX ) ).
 48 *           Before entry, the incremented array X must contain the n
 49 *           element vector x.
 50 *           Unchanged on exit.
 51 *
 52 *  INCX   - INTEGER.
 53 *           On entry, INCX specifies the increment for the elements of
 54 *           X. INCX must not be zero.
 55 *           Unchanged on exit.
 56 *
 57 *  Y      - REAL             array of dimension at least
 58 *           ( 1 + ( n - 1 )*abs( INCY ) ).
 59 *           Before entry, the incremented array Y must contain the n
 60 *           element vector y.
 61 *           Unchanged on exit.
 62 *
 63 *  INCY   - INTEGER.
 64 *           On entry, INCY specifies the increment for the elements of
 65 *           Y. INCY must not be zero.
 66 *           Unchanged on exit.
 67 *
 68 *  A      - REAL             array of DIMENSION ( LDA, n ).
 69 *           Before entry with  UPLO = 'U' or 'u', the leading n by n
 70 *           upper triangular part of the array A must contain the upper
 71 *           triangular part of the symmetric matrix and the strictly
 72 *           lower triangular part of A is not referenced. On exit, the
 73 *           upper triangular part of the array A is overwritten by the
 74 *           upper triangular part of the updated matrix.
 75 *           Before entry with UPLO = 'L' or 'l', the leading n by n
 76 *           lower triangular part of the array A must contain the lower
 77 *           triangular part of the symmetric matrix and the strictly
 78 *           upper triangular part of A is not referenced. On exit, the
 79 *           lower triangular part of the array A is overwritten by the
 80 *           lower triangular part of the updated matrix.
 81 *
 82 *  LDA    - INTEGER.
 83 *           On entry, LDA specifies the first dimension of A as declared
 84 *           in the calling (sub) program. LDA must be at least
 85 *           max( 1, n ).
 86 *           Unchanged on exit.
 87 *
 88 *  Further Details
 89 *  ===============
 90 *
 91 *  Level 2 Blas routine.
 92 *
 93 *  -- Written on 22-October-1986.
 94 *     Jack Dongarra, Argonne National Lab.
 95 *     Jeremy Du Croz, Nag Central Office.
 96 *     Sven Hammarling, Nag Central Office.
 97 *     Richard Hanson, Sandia National Labs.
 98 *
 99 *  =====================================================================
100 *
101 *     .. Parameters ..
102       REAL ZERO
103       PARAMETER (ZERO=0.0E+0)
104 *     ..
105 *     .. Local Scalars ..
106       REAL TEMP1,TEMP2
107       INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY
108 *     ..
109 *     .. External Functions ..
110       LOGICAL LSAME
111       EXTERNAL LSAME
112 *     ..
113 *     .. External Subroutines ..
114       EXTERNAL XERBLA
115 *     ..
116 *     .. Intrinsic Functions ..
117       INTRINSIC MAX
118 *     ..
119 *
120 *     Test the input parameters.
121 *
122       INFO = 0
123       IF (.NOT.LSAME(UPLO,'U'.AND. .NOT.LSAME(UPLO,'L')) THEN
124           INFO = 1
125       ELSE IF (N.LT.0THEN
126           INFO = 2
127       ELSE IF (INCX.EQ.0THEN
128           INFO = 5
129       ELSE IF (INCY.EQ.0THEN
130           INFO = 7
131       ELSE IF (LDA.LT.MAX(1,N)) THEN
132           INFO = 9
133       END IF
134       IF (INFO.NE.0THEN
135           CALL XERBLA('SSYR2 ',INFO)
136           RETURN
137       END IF
138 *
139 *     Quick return if possible.
140 *
141       IF ((N.EQ.0.OR. (ALPHA.EQ.ZERO)) RETURN
142 *
143 *     Set up the start points in X and Y if the increments are not both
144 *     unity.
145 *
146       IF ((INCX.NE.1.OR. (INCY.NE.1)) THEN
147           IF (INCX.GT.0THEN
148               KX = 1
149           ELSE
150               KX = 1 - (N-1)*INCX
151           END IF
152           IF (INCY.GT.0THEN
153               KY = 1
154           ELSE
155               KY = 1 - (N-1)*INCY
156           END IF
157           JX = KX
158           JY = KY
159       END IF
160 *
161 *     Start the operations. In this version the elements of A are
162 *     accessed sequentially with one pass through the triangular part
163 *     of A.
164 *
165       IF (LSAME(UPLO,'U')) THEN
166 *
167 *        Form  A  when A is stored in the upper triangle.
168 *
169           IF ((INCX.EQ.1.AND. (INCY.EQ.1)) THEN
170               DO 20 J = 1,N
171                   IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
172                       TEMP1 = ALPHA*Y(J)
173                       TEMP2 = ALPHA*X(J)
174                       DO 10 I = 1,J
175                           A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2
176    10                 CONTINUE
177                   END IF
178    20         CONTINUE
179           ELSE
180               DO 40 J = 1,N
181                   IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
182                       TEMP1 = ALPHA*Y(JY)
183                       TEMP2 = ALPHA*X(JX)
184                       IX = KX
185                       IY = KY
186                       DO 30 I = 1,J
187                           A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2
188                           IX = IX + INCX
189                           IY = IY + INCY
190    30                 CONTINUE
191                   END IF
192                   JX = JX + INCX
193                   JY = JY + INCY
194    40         CONTINUE
195           END IF
196       ELSE
197 *
198 *        Form  A  when A is stored in the lower triangle.
199 *
200           IF ((INCX.EQ.1.AND. (INCY.EQ.1)) THEN
201               DO 60 J = 1,N
202                   IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
203                       TEMP1 = ALPHA*Y(J)
204                       TEMP2 = ALPHA*X(J)
205                       DO 50 I = J,N
206                           A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2
207    50                 CONTINUE
208                   END IF
209    60         CONTINUE
210           ELSE
211               DO 80 J = 1,N
212                   IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
213                       TEMP1 = ALPHA*Y(JY)
214                       TEMP2 = ALPHA*X(JX)
215                       IX = JX
216                       IY = JY
217                       DO 70 I = J,N
218                           A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2
219                           IX = IX + INCX
220                           IY = IY + INCY
221    70                 CONTINUE
222                   END IF
223                   JX = JX + INCX
224                   JY = JY + INCY
225    80         CONTINUE
226           END IF
227       END IF
228 *
229       RETURN
230 *
231 *     End of SSYR2 .
232 *
233       END