1       SUBROUTINE STBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
  2 *     .. Scalar Arguments ..
  3       INTEGER INCX,K,LDA,N
  4       CHARACTER DIAG,TRANS,UPLO
  5 *     ..
  6 *     .. Array Arguments ..
  7       REAL A(LDA,*),X(*)
  8 *     ..
  9 *
 10 *  Purpose
 11 *  =======
 12 *
 13 *  STBMV  performs one of the matrix-vector operations
 14 *
 15 *     x := A*x,   or   x := A**T*x,
 16 *
 17 *  where x is an n element vector and  A is an n by n unit, or non-unit,
 18 *  upper or lower triangular band matrix, with ( k + 1 ) diagonals.
 19 *
 20 *  Arguments
 21 *  ==========
 22 *
 23 *  UPLO   - CHARACTER*1.
 24 *           On entry, UPLO specifies whether the matrix is an upper or
 25 *           lower triangular matrix as follows:
 26 *
 27 *              UPLO = 'U' or 'u'   A is an upper triangular matrix.
 28 *
 29 *              UPLO = 'L' or 'l'   A is a lower triangular matrix.
 30 *
 31 *           Unchanged on exit.
 32 *
 33 *  TRANS  - CHARACTER*1.
 34 *           On entry, TRANS specifies the operation to be performed as
 35 *           follows:
 36 *
 37 *              TRANS = 'N' or 'n'   x := A*x.
 38 *
 39 *              TRANS = 'T' or 't'   x := A**T*x.
 40 *
 41 *              TRANS = 'C' or 'c'   x := A**T*x.
 42 *
 43 *           Unchanged on exit.
 44 *
 45 *  DIAG   - CHARACTER*1.
 46 *           On entry, DIAG specifies whether or not A is unit
 47 *           triangular as follows:
 48 *
 49 *              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
 50 *
 51 *              DIAG = 'N' or 'n'   A is not assumed to be unit
 52 *                                  triangular.
 53 *
 54 *           Unchanged on exit.
 55 *
 56 *  N      - INTEGER.
 57 *           On entry, N specifies the order of the matrix A.
 58 *           N must be at least zero.
 59 *           Unchanged on exit.
 60 *
 61 *  K      - INTEGER.
 62 *           On entry with UPLO = 'U' or 'u', K specifies the number of
 63 *           super-diagonals of the matrix A.
 64 *           On entry with UPLO = 'L' or 'l', K specifies the number of
 65 *           sub-diagonals of the matrix A.
 66 *           K must satisfy  0 .le. K.
 67 *           Unchanged on exit.
 68 *
 69 *  A      - REAL             array of DIMENSION ( LDA, n ).
 70 *           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
 71 *           by n part of the array A must contain the upper triangular
 72 *           band part of the matrix of coefficients, supplied column by
 73 *           column, with the leading diagonal of the matrix in row
 74 *           ( k + 1 ) of the array, the first super-diagonal starting at
 75 *           position 2 in row k, and so on. The top left k by k triangle
 76 *           of the array A is not referenced.
 77 *           The following program segment will transfer an upper
 78 *           triangular band matrix from conventional full matrix storage
 79 *           to band storage:
 80 *
 81 *                 DO 20, J = 1, N
 82 *                    M = K + 1 - J
 83 *                    DO 10, I = MAX( 1, J - K ), J
 84 *                       A( M + I, J ) = matrix( I, J )
 85 *              10    CONTINUE
 86 *              20 CONTINUE
 87 *
 88 *           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
 89 *           by n part of the array A must contain the lower triangular
 90 *           band part of the matrix of coefficients, supplied column by
 91 *           column, with the leading diagonal of the matrix in row 1 of
 92 *           the array, the first sub-diagonal starting at position 1 in
 93 *           row 2, and so on. The bottom right k by k triangle of the
 94 *           array A is not referenced.
 95 *           The following program segment will transfer a lower
 96 *           triangular band matrix from conventional full matrix storage
 97 *           to band storage:
 98 *
 99 *                 DO 20, J = 1, N
100 *                    M = 1 - J
101 *                    DO 10, I = J, MIN( N, J + K )
102 *                       A( M + I, J ) = matrix( I, J )
103 *              10    CONTINUE
104 *              20 CONTINUE
105 *
106 *           Note that when DIAG = 'U' or 'u' the elements of the array A
107 *           corresponding to the diagonal elements of the matrix are not
108 *           referenced, but are assumed to be unity.
109 *           Unchanged on exit.
110 *
111 *  LDA    - INTEGER.
112 *           On entry, LDA specifies the first dimension of A as declared
113 *           in the calling (sub) program. LDA must be at least
114 *           ( k + 1 ).
115 *           Unchanged on exit.
116 *
117 *  X      - REAL             array of dimension at least
118 *           ( 1 + ( n - 1 )*abs( INCX ) ).
119 *           Before entry, the incremented array X must contain the n
120 *           element vector x. On exit, X is overwritten with the
121 *           tranformed vector x.
122 *
123 *  INCX   - INTEGER.
124 *           On entry, INCX specifies the increment for the elements of
125 *           X. INCX must not be zero.
126 *           Unchanged on exit.
127 *
128 *  Further Details
129 *  ===============
130 *
131 *  Level 2 Blas routine.
132 *  The vector and matrix arguments are not referenced when N = 0, or M = 0
133 *
134 *  -- Written on 22-October-1986.
135 *     Jack Dongarra, Argonne National Lab.
136 *     Jeremy Du Croz, Nag Central Office.
137 *     Sven Hammarling, Nag Central Office.
138 *     Richard Hanson, Sandia National Labs.
139 *
140 *  =====================================================================
141 *
142 *     .. Parameters ..
143       REAL ZERO
144       PARAMETER (ZERO=0.0E+0)
145 *     ..
146 *     .. Local Scalars ..
147       REAL TEMP
148       INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
149       LOGICAL NOUNIT
150 *     ..
151 *     .. External Functions ..
152       LOGICAL LSAME
153       EXTERNAL LSAME
154 *     ..
155 *     .. External Subroutines ..
156       EXTERNAL XERBLA
157 *     ..
158 *     .. Intrinsic Functions ..
159       INTRINSIC MAX,MIN
160 *     ..
161 *
162 *     Test the input parameters.
163 *
164       INFO = 0
165       IF (.NOT.LSAME(UPLO,'U'.AND. .NOT.LSAME(UPLO,'L')) THEN
166           INFO = 1
167       ELSE IF (.NOT.LSAME(TRANS,'N'.AND. .NOT.LSAME(TRANS,'T'.AND.
168      +         .NOT.LSAME(TRANS,'C')) THEN
169           INFO = 2
170       ELSE IF (.NOT.LSAME(DIAG,'U'.AND. .NOT.LSAME(DIAG,'N')) THEN
171           INFO = 3
172       ELSE IF (N.LT.0THEN
173           INFO = 4
174       ELSE IF (K.LT.0THEN
175           INFO = 5
176       ELSE IF (LDA.LT. (K+1)) THEN
177           INFO = 7
178       ELSE IF (INCX.EQ.0THEN
179           INFO = 9
180       END IF
181       IF (INFO.NE.0THEN
182           CALL XERBLA('STBMV ',INFO)
183           RETURN
184       END IF
185 *
186 *     Quick return if possible.
187 *
188       IF (N.EQ.0RETURN
189 *
190       NOUNIT = LSAME(DIAG,'N')
191 *
192 *     Set up the start point in X if the increment is not unity. This
193 *     will be  ( N - 1 )*INCX   too small for descending loops.
194 *
195       IF (INCX.LE.0THEN
196           KX = 1 - (N-1)*INCX
197       ELSE IF (INCX.NE.1THEN
198           KX = 1
199       END IF
200 *
201 *     Start the operations. In this version the elements of A are
202 *     accessed sequentially with one pass through A.
203 *
204       IF (LSAME(TRANS,'N')) THEN
205 *
206 *         Form  x := A*x.
207 *
208           IF (LSAME(UPLO,'U')) THEN
209               KPLUS1 = K + 1
210               IF (INCX.EQ.1THEN
211                   DO 20 J = 1,N
212                       IF (X(J).NE.ZERO) THEN
213                           TEMP = X(J)
214                           L = KPLUS1 - J
215                           DO 10 I = MAX(1,J-K),J - 1
216                               X(I) = X(I) + TEMP*A(L+I,J)
217    10                     CONTINUE
218                           IF (NOUNIT) X(J) = X(J)*A(KPLUS1,J)
219                       END IF
220    20             CONTINUE
221               ELSE
222                   JX = KX
223                   DO 40 J = 1,N
224                       IF (X(JX).NE.ZERO) THEN
225                           TEMP = X(JX)
226                           IX = KX
227                           L = KPLUS1 - J
228                           DO 30 I = MAX(1,J-K),J - 1
229                               X(IX) = X(IX) + TEMP*A(L+I,J)
230                               IX = IX + INCX
231    30                     CONTINUE
232                           IF (NOUNIT) X(JX) = X(JX)*A(KPLUS1,J)
233                       END IF
234                       JX = JX + INCX
235                       IF (J.GT.K) KX = KX + INCX
236    40             CONTINUE
237               END IF
238           ELSE
239               IF (INCX.EQ.1THEN
240                   DO 60 J = N,1,-1
241                       IF (X(J).NE.ZERO) THEN
242                           TEMP = X(J)
243                           L = 1 - J
244                           DO 50 I = MIN(N,J+K),J + 1,-1
245                               X(I) = X(I) + TEMP*A(L+I,J)
246    50                     CONTINUE
247                           IF (NOUNIT) X(J) = X(J)*A(1,J)
248                       END IF
249    60             CONTINUE
250               ELSE
251                   KX = KX + (N-1)*INCX
252                   JX = KX
253                   DO 80 J = N,1,-1
254                       IF (X(JX).NE.ZERO) THEN
255                           TEMP = X(JX)
256                           IX = KX
257                           L = 1 - J
258                           DO 70 I = MIN(N,J+K),J + 1,-1
259                               X(IX) = X(IX) + TEMP*A(L+I,J)
260                               IX = IX - INCX
261    70                     CONTINUE
262                           IF (NOUNIT) X(JX) = X(JX)*A(1,J)
263                       END IF
264                       JX = JX - INCX
265                       IF ((N-J).GE.K) KX = KX - INCX
266    80             CONTINUE
267               END IF
268           END IF
269       ELSE
270 *
271 *        Form  x := A**T*x.
272 *
273           IF (LSAME(UPLO,'U')) THEN
274               KPLUS1 = K + 1
275               IF (INCX.EQ.1THEN
276                   DO 100 J = N,1,-1
277                       TEMP = X(J)
278                       L = KPLUS1 - J
279                       IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
280                       DO 90 I = J - 1,MAX(1,J-K),-1
281                           TEMP = TEMP + A(L+I,J)*X(I)
282    90                 CONTINUE
283                       X(J) = TEMP
284   100             CONTINUE
285               ELSE
286                   KX = KX + (N-1)*INCX
287                   JX = KX
288                   DO 120 J = N,1,-1
289                       TEMP = X(JX)
290                       KX = KX - INCX
291                       IX = KX
292                       L = KPLUS1 - J
293                       IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
294                       DO 110 I = J - 1,MAX(1,J-K),-1
295                           TEMP = TEMP + A(L+I,J)*X(IX)
296                           IX = IX - INCX
297   110                 CONTINUE
298                       X(JX) = TEMP
299                       JX = JX - INCX
300   120             CONTINUE
301               END IF
302           ELSE
303               IF (INCX.EQ.1THEN
304                   DO 140 J = 1,N
305                       TEMP = X(J)
306                       L = 1 - J
307                       IF (NOUNIT) TEMP = TEMP*A(1,J)
308                       DO 130 I = J + 1,MIN(N,J+K)
309                           TEMP = TEMP + A(L+I,J)*X(I)
310   130                 CONTINUE
311                       X(J) = TEMP
312   140             CONTINUE
313               ELSE
314                   JX = KX
315                   DO 160 J = 1,N
316                       TEMP = X(JX)
317                       KX = KX + INCX
318                       IX = KX
319                       L = 1 - J
320                       IF (NOUNIT) TEMP = TEMP*A(1,J)
321                       DO 150 I = J + 1,MIN(N,J+K)
322                           TEMP = TEMP + A(L+I,J)*X(IX)
323                           IX = IX + INCX
324   150                 CONTINUE
325                       X(JX) = TEMP
326                       JX = JX + INCX
327   160             CONTINUE
328               END IF
329           END IF
330       END IF
331 *
332       RETURN
333 *
334 *     End of STBMV .
335 *
336       END