1       SUBROUTINE STBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
  2 *     .. Scalar Arguments ..
  3       INTEGER INCX,K,LDA,N
  4       CHARACTER DIAG,TRANS,UPLO
  5 *     ..
  6 *     .. Array Arguments ..
  7       REAL A(LDA,*),X(*)
  8 *     ..
  9 *
 10 *  Purpose
 11 *  =======
 12 *
 13 *  STBSV  solves one of the systems of equations
 14 *
 15 *     A*x = b,   or   A**T*x = b,
 16 *
 17 *  where b and x are n element vectors and A is an n by n unit, or
 18 *  non-unit, upper or lower triangular band matrix, with ( k + 1 )
 19 *  diagonals.
 20 *
 21 *  No test for singularity or near-singularity is included in this
 22 *  routine. Such tests must be performed before calling this routine.
 23 *
 24 *  Arguments
 25 *  ==========
 26 *
 27 *  UPLO   - CHARACTER*1.
 28 *           On entry, UPLO specifies whether the matrix is an upper or
 29 *           lower triangular matrix as follows:
 30 *
 31 *              UPLO = 'U' or 'u'   A is an upper triangular matrix.
 32 *
 33 *              UPLO = 'L' or 'l'   A is a lower triangular matrix.
 34 *
 35 *           Unchanged on exit.
 36 *
 37 *  TRANS  - CHARACTER*1.
 38 *           On entry, TRANS specifies the equations to be solved as
 39 *           follows:
 40 *
 41 *              TRANS = 'N' or 'n'   A*x = b.
 42 *
 43 *              TRANS = 'T' or 't'   A**T*x = b.
 44 *
 45 *              TRANS = 'C' or 'c'   A**T*x = b.
 46 *
 47 *           Unchanged on exit.
 48 *
 49 *  DIAG   - CHARACTER*1.
 50 *           On entry, DIAG specifies whether or not A is unit
 51 *           triangular as follows:
 52 *
 53 *              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
 54 *
 55 *              DIAG = 'N' or 'n'   A is not assumed to be unit
 56 *                                  triangular.
 57 *
 58 *           Unchanged on exit.
 59 *
 60 *  N      - INTEGER.
 61 *           On entry, N specifies the order of the matrix A.
 62 *           N must be at least zero.
 63 *           Unchanged on exit.
 64 *
 65 *  K      - INTEGER.
 66 *           On entry with UPLO = 'U' or 'u', K specifies the number of
 67 *           super-diagonals of the matrix A.
 68 *           On entry with UPLO = 'L' or 'l', K specifies the number of
 69 *           sub-diagonals of the matrix A.
 70 *           K must satisfy  0 .le. K.
 71 *           Unchanged on exit.
 72 *
 73 *  A      - REAL             array of DIMENSION ( LDA, n ).
 74 *           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
 75 *           by n part of the array A must contain the upper triangular
 76 *           band part of the matrix of coefficients, supplied column by
 77 *           column, with the leading diagonal of the matrix in row
 78 *           ( k + 1 ) of the array, the first super-diagonal starting at
 79 *           position 2 in row k, and so on. The top left k by k triangle
 80 *           of the array A is not referenced.
 81 *           The following program segment will transfer an upper
 82 *           triangular band matrix from conventional full matrix storage
 83 *           to band storage:
 84 *
 85 *                 DO 20, J = 1, N
 86 *                    M = K + 1 - J
 87 *                    DO 10, I = MAX( 1, J - K ), J
 88 *                       A( M + I, J ) = matrix( I, J )
 89 *              10    CONTINUE
 90 *              20 CONTINUE
 91 *
 92 *           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
 93 *           by n part of the array A must contain the lower triangular
 94 *           band part of the matrix of coefficients, supplied column by
 95 *           column, with the leading diagonal of the matrix in row 1 of
 96 *           the array, the first sub-diagonal starting at position 1 in
 97 *           row 2, and so on. The bottom right k by k triangle of the
 98 *           array A is not referenced.
 99 *           The following program segment will transfer a lower
100 *           triangular band matrix from conventional full matrix storage
101 *           to band storage:
102 *
103 *                 DO 20, J = 1, N
104 *                    M = 1 - J
105 *                    DO 10, I = J, MIN( N, J + K )
106 *                       A( M + I, J ) = matrix( I, J )
107 *              10    CONTINUE
108 *              20 CONTINUE
109 *
110 *           Note that when DIAG = 'U' or 'u' the elements of the array A
111 *           corresponding to the diagonal elements of the matrix are not
112 *           referenced, but are assumed to be unity.
113 *           Unchanged on exit.
114 *
115 *  LDA    - INTEGER.
116 *           On entry, LDA specifies the first dimension of A as declared
117 *           in the calling (sub) program. LDA must be at least
118 *           ( k + 1 ).
119 *           Unchanged on exit.
120 *
121 *  X      - REAL             array of dimension at least
122 *           ( 1 + ( n - 1 )*abs( INCX ) ).
123 *           Before entry, the incremented array X must contain the n
124 *           element right-hand side vector b. On exit, X is overwritten
125 *           with the solution vector x.
126 *
127 *  INCX   - INTEGER.
128 *           On entry, INCX specifies the increment for the elements of
129 *           X. INCX must not be zero.
130 *           Unchanged on exit.
131 *
132 *  Further Details
133 *  ===============
134 *
135 *  Level 2 Blas routine.
136 *
137 *  -- Written on 22-October-1986.
138 *     Jack Dongarra, Argonne National Lab.
139 *     Jeremy Du Croz, Nag Central Office.
140 *     Sven Hammarling, Nag Central Office.
141 *     Richard Hanson, Sandia National Labs.
142 *
143 *  =====================================================================
144 *
145 *     .. Parameters ..
146       REAL ZERO
147       PARAMETER (ZERO=0.0E+0)
148 *     ..
149 *     .. Local Scalars ..
150       REAL TEMP
151       INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
152       LOGICAL NOUNIT
153 *     ..
154 *     .. External Functions ..
155       LOGICAL LSAME
156       EXTERNAL LSAME
157 *     ..
158 *     .. External Subroutines ..
159       EXTERNAL XERBLA
160 *     ..
161 *     .. Intrinsic Functions ..
162       INTRINSIC MAX,MIN
163 *     ..
164 *
165 *     Test the input parameters.
166 *
167       INFO = 0
168       IF (.NOT.LSAME(UPLO,'U'.AND. .NOT.LSAME(UPLO,'L')) THEN
169           INFO = 1
170       ELSE IF (.NOT.LSAME(TRANS,'N'.AND. .NOT.LSAME(TRANS,'T'.AND.
171      +         .NOT.LSAME(TRANS,'C')) THEN
172           INFO = 2
173       ELSE IF (.NOT.LSAME(DIAG,'U'.AND. .NOT.LSAME(DIAG,'N')) THEN
174           INFO = 3
175       ELSE IF (N.LT.0THEN
176           INFO = 4
177       ELSE IF (K.LT.0THEN
178           INFO = 5
179       ELSE IF (LDA.LT. (K+1)) THEN
180           INFO = 7
181       ELSE IF (INCX.EQ.0THEN
182           INFO = 9
183       END IF
184       IF (INFO.NE.0THEN
185           CALL XERBLA('STBSV ',INFO)
186           RETURN
187       END IF
188 *
189 *     Quick return if possible.
190 *
191       IF (N.EQ.0RETURN
192 *
193       NOUNIT = LSAME(DIAG,'N')
194 *
195 *     Set up the start point in X if the increment is not unity. This
196 *     will be  ( N - 1 )*INCX  too small for descending loops.
197 *
198       IF (INCX.LE.0THEN
199           KX = 1 - (N-1)*INCX
200       ELSE IF (INCX.NE.1THEN
201           KX = 1
202       END IF
203 *
204 *     Start the operations. In this version the elements of A are
205 *     accessed by sequentially with one pass through A.
206 *
207       IF (LSAME(TRANS,'N')) THEN
208 *
209 *        Form  x := inv( A )*x.
210 *
211           IF (LSAME(UPLO,'U')) THEN
212               KPLUS1 = K + 1
213               IF (INCX.EQ.1THEN
214                   DO 20 J = N,1,-1
215                       IF (X(J).NE.ZERO) THEN
216                           L = KPLUS1 - J
217                           IF (NOUNIT) X(J) = X(J)/A(KPLUS1,J)
218                           TEMP = X(J)
219                           DO 10 I = J - 1,MAX(1,J-K),-1
220                               X(I) = X(I) - TEMP*A(L+I,J)
221    10                     CONTINUE
222                       END IF
223    20             CONTINUE
224               ELSE
225                   KX = KX + (N-1)*INCX
226                   JX = KX
227                   DO 40 J = N,1,-1
228                       KX = KX - INCX
229                       IF (X(JX).NE.ZERO) THEN
230                           IX = KX
231                           L = KPLUS1 - J
232                           IF (NOUNIT) X(JX) = X(JX)/A(KPLUS1,J)
233                           TEMP = X(JX)
234                           DO 30 I = J - 1,MAX(1,J-K),-1
235                               X(IX) = X(IX) - TEMP*A(L+I,J)
236                               IX = IX - INCX
237    30                     CONTINUE
238                       END IF
239                       JX = JX - INCX
240    40             CONTINUE
241               END IF
242           ELSE
243               IF (INCX.EQ.1THEN
244                   DO 60 J = 1,N
245                       IF (X(J).NE.ZERO) THEN
246                           L = 1 - J
247                           IF (NOUNIT) X(J) = X(J)/A(1,J)
248                           TEMP = X(J)
249                           DO 50 I = J + 1,MIN(N,J+K)
250                               X(I) = X(I) - TEMP*A(L+I,J)
251    50                     CONTINUE
252                       END IF
253    60             CONTINUE
254               ELSE
255                   JX = KX
256                   DO 80 J = 1,N
257                       KX = KX + INCX
258                       IF (X(JX).NE.ZERO) THEN
259                           IX = KX
260                           L = 1 - J
261                           IF (NOUNIT) X(JX) = X(JX)/A(1,J)
262                           TEMP = X(JX)
263                           DO 70 I = J + 1,MIN(N,J+K)
264                               X(IX) = X(IX) - TEMP*A(L+I,J)
265                               IX = IX + INCX
266    70                     CONTINUE
267                       END IF
268                       JX = JX + INCX
269    80             CONTINUE
270               END IF
271           END IF
272       ELSE
273 *
274 *        Form  x := inv( A**T)*x.
275 *
276           IF (LSAME(UPLO,'U')) THEN
277               KPLUS1 = K + 1
278               IF (INCX.EQ.1THEN
279                   DO 100 J = 1,N
280                       TEMP = X(J)
281                       L = KPLUS1 - J
282                       DO 90 I = MAX(1,J-K),J - 1
283                           TEMP = TEMP - A(L+I,J)*X(I)
284    90                 CONTINUE
285                       IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
286                       X(J) = TEMP
287   100             CONTINUE
288               ELSE
289                   JX = KX
290                   DO 120 J = 1,N
291                       TEMP = X(JX)
292                       IX = KX
293                       L = KPLUS1 - J
294                       DO 110 I = MAX(1,J-K),J - 1
295                           TEMP = TEMP - A(L+I,J)*X(IX)
296                           IX = IX + INCX
297   110                 CONTINUE
298                       IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
299                       X(JX) = TEMP
300                       JX = JX + INCX
301                       IF (J.GT.K) KX = KX + INCX
302   120             CONTINUE
303               END IF
304           ELSE
305               IF (INCX.EQ.1THEN
306                   DO 140 J = N,1,-1
307                       TEMP = X(J)
308                       L = 1 - J
309                       DO 130 I = MIN(N,J+K),J + 1,-1
310                           TEMP = TEMP - A(L+I,J)*X(I)
311   130                 CONTINUE
312                       IF (NOUNIT) TEMP = TEMP/A(1,J)
313                       X(J) = TEMP
314   140             CONTINUE
315               ELSE
316                   KX = KX + (N-1)*INCX
317                   JX = KX
318                   DO 160 J = N,1,-1
319                       TEMP = X(JX)
320                       IX = KX
321                       L = 1 - J
322                       DO 150 I = MIN(N,J+K),J + 1,-1
323                           TEMP = TEMP - A(L+I,J)*X(IX)
324                           IX = IX - INCX
325   150                 CONTINUE
326                       IF (NOUNIT) TEMP = TEMP/A(1,J)
327                       X(JX) = TEMP
328                       JX = JX - INCX
329                       IF ((N-J).GE.K) KX = KX - INCX
330   160             CONTINUE
331               END IF
332           END IF
333       END IF
334 *
335       RETURN
336 *
337 *     End of STBSV .
338 *
339       END