1       SUBROUTINE STPMV(UPLO,TRANS,DIAG,N,AP,X,INCX)
  2 *     .. Scalar Arguments ..
  3       INTEGER INCX,N
  4       CHARACTER DIAG,TRANS,UPLO
  5 *     ..
  6 *     .. Array Arguments ..
  7       REAL AP(*),X(*)
  8 *     ..
  9 *
 10 *  Purpose
 11 *  =======
 12 *
 13 *  STPMV  performs one of the matrix-vector operations
 14 *
 15 *     x := A*x,   or   x := A**T*x,
 16 *
 17 *  where x is an n element vector and  A is an n by n unit, or non-unit,
 18 *  upper or lower triangular matrix, supplied in packed form.
 19 *
 20 *  Arguments
 21 *  ==========
 22 *
 23 *  UPLO   - CHARACTER*1.
 24 *           On entry, UPLO specifies whether the matrix is an upper or
 25 *           lower triangular matrix as follows:
 26 *
 27 *              UPLO = 'U' or 'u'   A is an upper triangular matrix.
 28 *
 29 *              UPLO = 'L' or 'l'   A is a lower triangular matrix.
 30 *
 31 *           Unchanged on exit.
 32 *
 33 *  TRANS  - CHARACTER*1.
 34 *           On entry, TRANS specifies the operation to be performed as
 35 *           follows:
 36 *
 37 *              TRANS = 'N' or 'n'   x := A*x.
 38 *
 39 *              TRANS = 'T' or 't'   x := A**T*x.
 40 *
 41 *              TRANS = 'C' or 'c'   x := A**T*x.
 42 *
 43 *           Unchanged on exit.
 44 *
 45 *  DIAG   - CHARACTER*1.
 46 *           On entry, DIAG specifies whether or not A is unit
 47 *           triangular as follows:
 48 *
 49 *              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
 50 *
 51 *              DIAG = 'N' or 'n'   A is not assumed to be unit
 52 *                                  triangular.
 53 *
 54 *           Unchanged on exit.
 55 *
 56 *  N      - INTEGER.
 57 *           On entry, N specifies the order of the matrix A.
 58 *           N must be at least zero.
 59 *           Unchanged on exit.
 60 *
 61 *  AP     - REAL             array of DIMENSION at least
 62 *           ( ( n*( n + 1 ) )/2 ).
 63 *           Before entry with  UPLO = 'U' or 'u', the array AP must
 64 *           contain the upper triangular matrix packed sequentially,
 65 *           column by column, so that AP( 1 ) contains a( 1, 1 ),
 66 *           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
 67 *           respectively, and so on.
 68 *           Before entry with UPLO = 'L' or 'l', the array AP must
 69 *           contain the lower triangular matrix packed sequentially,
 70 *           column by column, so that AP( 1 ) contains a( 1, 1 ),
 71 *           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
 72 *           respectively, and so on.
 73 *           Note that when  DIAG = 'U' or 'u', the diagonal elements of
 74 *           A are not referenced, but are assumed to be unity.
 75 *           Unchanged on exit.
 76 *
 77 *  X      - REAL             array of dimension at least
 78 *           ( 1 + ( n - 1 )*abs( INCX ) ).
 79 *           Before entry, the incremented array X must contain the n
 80 *           element vector x. On exit, X is overwritten with the
 81 *           tranformed vector x.
 82 *
 83 *  INCX   - INTEGER.
 84 *           On entry, INCX specifies the increment for the elements of
 85 *           X. INCX must not be zero.
 86 *           Unchanged on exit.
 87 *
 88 *  Further Details
 89 *  ===============
 90 *
 91 *  Level 2 Blas routine.
 92 *  The vector and matrix arguments are not referenced when N = 0, or M = 0
 93 *
 94 *  -- Written on 22-October-1986.
 95 *     Jack Dongarra, Argonne National Lab.
 96 *     Jeremy Du Croz, Nag Central Office.
 97 *     Sven Hammarling, Nag Central Office.
 98 *     Richard Hanson, Sandia National Labs.
 99 *
100 *  =====================================================================
101 *
102 *     .. Parameters ..
103       REAL ZERO
104       PARAMETER (ZERO=0.0E+0)
105 *     ..
106 *     .. Local Scalars ..
107       REAL TEMP
108       INTEGER I,INFO,IX,J,JX,K,KK,KX
109       LOGICAL NOUNIT
110 *     ..
111 *     .. External Functions ..
112       LOGICAL LSAME
113       EXTERNAL LSAME
114 *     ..
115 *     .. External Subroutines ..
116       EXTERNAL XERBLA
117 *     ..
118 *
119 *     Test the input parameters.
120 *
121       INFO = 0
122       IF (.NOT.LSAME(UPLO,'U'.AND. .NOT.LSAME(UPLO,'L')) THEN
123           INFO = 1
124       ELSE IF (.NOT.LSAME(TRANS,'N'.AND. .NOT.LSAME(TRANS,'T'.AND.
125      +         .NOT.LSAME(TRANS,'C')) THEN
126           INFO = 2
127       ELSE IF (.NOT.LSAME(DIAG,'U'.AND. .NOT.LSAME(DIAG,'N')) THEN
128           INFO = 3
129       ELSE IF (N.LT.0THEN
130           INFO = 4
131       ELSE IF (INCX.EQ.0THEN
132           INFO = 7
133       END IF
134       IF (INFO.NE.0THEN
135           CALL XERBLA('STPMV ',INFO)
136           RETURN
137       END IF
138 *
139 *     Quick return if possible.
140 *
141       IF (N.EQ.0RETURN
142 *
143       NOUNIT = LSAME(DIAG,'N')
144 *
145 *     Set up the start point in X if the increment is not unity. This
146 *     will be  ( N - 1 )*INCX  too small for descending loops.
147 *
148       IF (INCX.LE.0THEN
149           KX = 1 - (N-1)*INCX
150       ELSE IF (INCX.NE.1THEN
151           KX = 1
152       END IF
153 *
154 *     Start the operations. In this version the elements of AP are
155 *     accessed sequentially with one pass through AP.
156 *
157       IF (LSAME(TRANS,'N')) THEN
158 *
159 *        Form  x:= A*x.
160 *
161           IF (LSAME(UPLO,'U')) THEN
162               KK = 1
163               IF (INCX.EQ.1THEN
164                   DO 20 J = 1,N
165                       IF (X(J).NE.ZERO) THEN
166                           TEMP = X(J)
167                           K = KK
168                           DO 10 I = 1,J - 1
169                               X(I) = X(I) + TEMP*AP(K)
170                               K = K + 1
171    10                     CONTINUE
172                           IF (NOUNIT) X(J) = X(J)*AP(KK+J-1)
173                       END IF
174                       KK = KK + J
175    20             CONTINUE
176               ELSE
177                   JX = KX
178                   DO 40 J = 1,N
179                       IF (X(JX).NE.ZERO) THEN
180                           TEMP = X(JX)
181                           IX = KX
182                           DO 30 K = KK,KK + J - 2
183                               X(IX) = X(IX) + TEMP*AP(K)
184                               IX = IX + INCX
185    30                     CONTINUE
186                           IF (NOUNIT) X(JX) = X(JX)*AP(KK+J-1)
187                       END IF
188                       JX = JX + INCX
189                       KK = KK + J
190    40             CONTINUE
191               END IF
192           ELSE
193               KK = (N* (N+1))/2
194               IF (INCX.EQ.1THEN
195                   DO 60 J = N,1,-1
196                       IF (X(J).NE.ZERO) THEN
197                           TEMP = X(J)
198                           K = KK
199                           DO 50 I = N,J + 1,-1
200                               X(I) = X(I) + TEMP*AP(K)
201                               K = K - 1
202    50                     CONTINUE
203                           IF (NOUNIT) X(J) = X(J)*AP(KK-N+J)
204                       END IF
205                       KK = KK - (N-J+1)
206    60             CONTINUE
207               ELSE
208                   KX = KX + (N-1)*INCX
209                   JX = KX
210                   DO 80 J = N,1,-1
211                       IF (X(JX).NE.ZERO) THEN
212                           TEMP = X(JX)
213                           IX = KX
214                           DO 70 K = KK,KK - (N- (J+1)),-1
215                               X(IX) = X(IX) + TEMP*AP(K)
216                               IX = IX - INCX
217    70                     CONTINUE
218                           IF (NOUNIT) X(JX) = X(JX)*AP(KK-N+J)
219                       END IF
220                       JX = JX - INCX
221                       KK = KK - (N-J+1)
222    80             CONTINUE
223               END IF
224           END IF
225       ELSE
226 *
227 *        Form  x := A**T*x.
228 *
229           IF (LSAME(UPLO,'U')) THEN
230               KK = (N* (N+1))/2
231               IF (INCX.EQ.1THEN
232                   DO 100 J = N,1,-1
233                       TEMP = X(J)
234                       IF (NOUNIT) TEMP = TEMP*AP(KK)
235                       K = KK - 1
236                       DO 90 I = J - 1,1,-1
237                           TEMP = TEMP + AP(K)*X(I)
238                           K = K - 1
239    90                 CONTINUE
240                       X(J) = TEMP
241                       KK = KK - J
242   100             CONTINUE
243               ELSE
244                   JX = KX + (N-1)*INCX
245                   DO 120 J = N,1,-1
246                       TEMP = X(JX)
247                       IX = JX
248                       IF (NOUNIT) TEMP = TEMP*AP(KK)
249                       DO 110 K = KK - 1,KK - J + 1,-1
250                           IX = IX - INCX
251                           TEMP = TEMP + AP(K)*X(IX)
252   110                 CONTINUE
253                       X(JX) = TEMP
254                       JX = JX - INCX
255                       KK = KK - J
256   120             CONTINUE
257               END IF
258           ELSE
259               KK = 1
260               IF (INCX.EQ.1THEN
261                   DO 140 J = 1,N
262                       TEMP = X(J)
263                       IF (NOUNIT) TEMP = TEMP*AP(KK)
264                       K = KK + 1
265                       DO 130 I = J + 1,N
266                           TEMP = TEMP + AP(K)*X(I)
267                           K = K + 1
268   130                 CONTINUE
269                       X(J) = TEMP
270                       KK = KK + (N-J+1)
271   140             CONTINUE
272               ELSE
273                   JX = KX
274                   DO 160 J = 1,N
275                       TEMP = X(JX)
276                       IX = JX
277                       IF (NOUNIT) TEMP = TEMP*AP(KK)
278                       DO 150 K = KK + 1,KK + N - J
279                           IX = IX + INCX
280                           TEMP = TEMP + AP(K)*X(IX)
281   150                 CONTINUE
282                       X(JX) = TEMP
283                       JX = JX + INCX
284                       KK = KK + (N-J+1)
285   160             CONTINUE
286               END IF
287           END IF
288       END IF
289 *
290       RETURN
291 *
292 *     End of STPMV .
293 *
294       END