1       SUBROUTINE STPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
  2 *     .. Scalar Arguments ..
  3       INTEGER INCX,N
  4       CHARACTER DIAG,TRANS,UPLO
  5 *     ..
  6 *     .. Array Arguments ..
  7       REAL AP(*),X(*)
  8 *     ..
  9 *
 10 *  Purpose
 11 *  =======
 12 *
 13 *  STPSV  solves one of the systems of equations
 14 *
 15 *     A*x = b,   or   A**T*x = b,
 16 *
 17 *  where b and x are n element vectors and A is an n by n unit, or
 18 *  non-unit, upper or lower triangular matrix, supplied in packed form.
 19 *
 20 *  No test for singularity or near-singularity is included in this
 21 *  routine. Such tests must be performed before calling this routine.
 22 *
 23 *  Arguments
 24 *  ==========
 25 *
 26 *  UPLO   - CHARACTER*1.
 27 *           On entry, UPLO specifies whether the matrix is an upper or
 28 *           lower triangular matrix as follows:
 29 *
 30 *              UPLO = 'U' or 'u'   A is an upper triangular matrix.
 31 *
 32 *              UPLO = 'L' or 'l'   A is a lower triangular matrix.
 33 *
 34 *           Unchanged on exit.
 35 *
 36 *  TRANS  - CHARACTER*1.
 37 *           On entry, TRANS specifies the equations to be solved as
 38 *           follows:
 39 *
 40 *              TRANS = 'N' or 'n'   A*x = b.
 41 *
 42 *              TRANS = 'T' or 't'   A**T*x = b.
 43 *
 44 *              TRANS = 'C' or 'c'   A**T*x = b.
 45 *
 46 *           Unchanged on exit.
 47 *
 48 *  DIAG   - CHARACTER*1.
 49 *           On entry, DIAG specifies whether or not A is unit
 50 *           triangular as follows:
 51 *
 52 *              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
 53 *
 54 *              DIAG = 'N' or 'n'   A is not assumed to be unit
 55 *                                  triangular.
 56 *
 57 *           Unchanged on exit.
 58 *
 59 *  N      - INTEGER.
 60 *           On entry, N specifies the order of the matrix A.
 61 *           N must be at least zero.
 62 *           Unchanged on exit.
 63 *
 64 *  AP     - REAL             array of DIMENSION at least
 65 *           ( ( n*( n + 1 ) )/2 ).
 66 *           Before entry with  UPLO = 'U' or 'u', the array AP must
 67 *           contain the upper triangular matrix packed sequentially,
 68 *           column by column, so that AP( 1 ) contains a( 1, 1 ),
 69 *           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
 70 *           respectively, and so on.
 71 *           Before entry with UPLO = 'L' or 'l', the array AP must
 72 *           contain the lower triangular matrix packed sequentially,
 73 *           column by column, so that AP( 1 ) contains a( 1, 1 ),
 74 *           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
 75 *           respectively, and so on.
 76 *           Note that when  DIAG = 'U' or 'u', the diagonal elements of
 77 *           A are not referenced, but are assumed to be unity.
 78 *           Unchanged on exit.
 79 *
 80 *  X      - REAL             array of dimension at least
 81 *           ( 1 + ( n - 1 )*abs( INCX ) ).
 82 *           Before entry, the incremented array X must contain the n
 83 *           element right-hand side vector b. On exit, X is overwritten
 84 *           with the solution vector x.
 85 *
 86 *  INCX   - INTEGER.
 87 *           On entry, INCX specifies the increment for the elements of
 88 *           X. INCX must not be zero.
 89 *           Unchanged on exit.
 90 *
 91 *  Further Details
 92 *  ===============
 93 *
 94 *  Level 2 Blas routine.
 95 *
 96 *  -- Written on 22-October-1986.
 97 *     Jack Dongarra, Argonne National Lab.
 98 *     Jeremy Du Croz, Nag Central Office.
 99 *     Sven Hammarling, Nag Central Office.
100 *     Richard Hanson, Sandia National Labs.
101 *
102 *  =====================================================================
103 *
104 *     .. Parameters ..
105       REAL ZERO
106       PARAMETER (ZERO=0.0E+0)
107 *     ..
108 *     .. Local Scalars ..
109       REAL TEMP
110       INTEGER I,INFO,IX,J,JX,K,KK,KX
111       LOGICAL NOUNIT
112 *     ..
113 *     .. External Functions ..
114       LOGICAL LSAME
115       EXTERNAL LSAME
116 *     ..
117 *     .. External Subroutines ..
118       EXTERNAL XERBLA
119 *     ..
120 *
121 *     Test the input parameters.
122 *
123       INFO = 0
124       IF (.NOT.LSAME(UPLO,'U'.AND. .NOT.LSAME(UPLO,'L')) THEN
125           INFO = 1
126       ELSE IF (.NOT.LSAME(TRANS,'N'.AND. .NOT.LSAME(TRANS,'T'.AND.
127      +         .NOT.LSAME(TRANS,'C')) THEN
128           INFO = 2
129       ELSE IF (.NOT.LSAME(DIAG,'U'.AND. .NOT.LSAME(DIAG,'N')) THEN
130           INFO = 3
131       ELSE IF (N.LT.0THEN
132           INFO = 4
133       ELSE IF (INCX.EQ.0THEN
134           INFO = 7
135       END IF
136       IF (INFO.NE.0THEN
137           CALL XERBLA('STPSV ',INFO)
138           RETURN
139       END IF
140 *
141 *     Quick return if possible.
142 *
143       IF (N.EQ.0RETURN
144 *
145       NOUNIT = LSAME(DIAG,'N')
146 *
147 *     Set up the start point in X if the increment is not unity. This
148 *     will be  ( N - 1 )*INCX  too small for descending loops.
149 *
150       IF (INCX.LE.0THEN
151           KX = 1 - (N-1)*INCX
152       ELSE IF (INCX.NE.1THEN
153           KX = 1
154       END IF
155 *
156 *     Start the operations. In this version the elements of AP are
157 *     accessed sequentially with one pass through AP.
158 *
159       IF (LSAME(TRANS,'N')) THEN
160 *
161 *        Form  x := inv( A )*x.
162 *
163           IF (LSAME(UPLO,'U')) THEN
164               KK = (N* (N+1))/2
165               IF (INCX.EQ.1THEN
166                   DO 20 J = N,1,-1
167                       IF (X(J).NE.ZERO) THEN
168                           IF (NOUNIT) X(J) = X(J)/AP(KK)
169                           TEMP = X(J)
170                           K = KK - 1
171                           DO 10 I = J - 1,1,-1
172                               X(I) = X(I) - TEMP*AP(K)
173                               K = K - 1
174    10                     CONTINUE
175                       END IF
176                       KK = KK - J
177    20             CONTINUE
178               ELSE
179                   JX = KX + (N-1)*INCX
180                   DO 40 J = N,1,-1
181                       IF (X(JX).NE.ZERO) THEN
182                           IF (NOUNIT) X(JX) = X(JX)/AP(KK)
183                           TEMP = X(JX)
184                           IX = JX
185                           DO 30 K = KK - 1,KK - J + 1,-1
186                               IX = IX - INCX
187                               X(IX) = X(IX) - TEMP*AP(K)
188    30                     CONTINUE
189                       END IF
190                       JX = JX - INCX
191                       KK = KK - J
192    40             CONTINUE
193               END IF
194           ELSE
195               KK = 1
196               IF (INCX.EQ.1THEN
197                   DO 60 J = 1,N
198                       IF (X(J).NE.ZERO) THEN
199                           IF (NOUNIT) X(J) = X(J)/AP(KK)
200                           TEMP = X(J)
201                           K = KK + 1
202                           DO 50 I = J + 1,N
203                               X(I) = X(I) - TEMP*AP(K)
204                               K = K + 1
205    50                     CONTINUE
206                       END IF
207                       KK = KK + (N-J+1)
208    60             CONTINUE
209               ELSE
210                   JX = KX
211                   DO 80 J = 1,N
212                       IF (X(JX).NE.ZERO) THEN
213                           IF (NOUNIT) X(JX) = X(JX)/AP(KK)
214                           TEMP = X(JX)
215                           IX = JX
216                           DO 70 K = KK + 1,KK + N - J
217                               IX = IX + INCX
218                               X(IX) = X(IX) - TEMP*AP(K)
219    70                     CONTINUE
220                       END IF
221                       JX = JX + INCX
222                       KK = KK + (N-J+1)
223    80             CONTINUE
224               END IF
225           END IF
226       ELSE
227 *
228 *        Form  x := inv( A**T )*x.
229 *
230           IF (LSAME(UPLO,'U')) THEN
231               KK = 1
232               IF (INCX.EQ.1THEN
233                   DO 100 J = 1,N
234                       TEMP = X(J)
235                       K = KK
236                       DO 90 I = 1,J - 1
237                           TEMP = TEMP - AP(K)*X(I)
238                           K = K + 1
239    90                 CONTINUE
240                       IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
241                       X(J) = TEMP
242                       KK = KK + J
243   100             CONTINUE
244               ELSE
245                   JX = KX
246                   DO 120 J = 1,N
247                       TEMP = X(JX)
248                       IX = KX
249                       DO 110 K = KK,KK + J - 2
250                           TEMP = TEMP - AP(K)*X(IX)
251                           IX = IX + INCX
252   110                 CONTINUE
253                       IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
254                       X(JX) = TEMP
255                       JX = JX + INCX
256                       KK = KK + J
257   120             CONTINUE
258               END IF
259           ELSE
260               KK = (N* (N+1))/2
261               IF (INCX.EQ.1THEN
262                   DO 140 J = N,1,-1
263                       TEMP = X(J)
264                       K = KK
265                       DO 130 I = N,J + 1,-1
266                           TEMP = TEMP - AP(K)*X(I)
267                           K = K - 1
268   130                 CONTINUE
269                       IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
270                       X(J) = TEMP
271                       KK = KK - (N-J+1)
272   140             CONTINUE
273               ELSE
274                   KX = KX + (N-1)*INCX
275                   JX = KX
276                   DO 160 J = N,1,-1
277                       TEMP = X(JX)
278                       IX = KX
279                       DO 150 K = KK,KK - (N- (J+1)),-1
280                           TEMP = TEMP - AP(K)*X(IX)
281                           IX = IX - INCX
282   150                 CONTINUE
283                       IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
284                       X(JX) = TEMP
285                       JX = JX - INCX
286                       KK = KK - (N-J+1)
287   160             CONTINUE
288               END IF
289           END IF
290       END IF
291 *
292       RETURN
293 *
294 *     End of STPSV .
295 *
296       END