1       SUBROUTINE STRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
  2 *     .. Scalar Arguments ..
  3       INTEGER INCX,LDA,N
  4       CHARACTER DIAG,TRANS,UPLO
  5 *     ..
  6 *     .. Array Arguments ..
  7       REAL A(LDA,*),X(*)
  8 *     ..
  9 *
 10 *  Purpose
 11 *  =======
 12 *
 13 *  STRMV  performs one of the matrix-vector operations
 14 *
 15 *     x := A*x,   or   x := A**T*x,
 16 *
 17 *  where x is an n element vector and  A is an n by n unit, or non-unit,
 18 *  upper or lower triangular matrix.
 19 *
 20 *  Arguments
 21 *  ==========
 22 *
 23 *  UPLO   - CHARACTER*1.
 24 *           On entry, UPLO specifies whether the matrix is an upper or
 25 *           lower triangular matrix as follows:
 26 *
 27 *              UPLO = 'U' or 'u'   A is an upper triangular matrix.
 28 *
 29 *              UPLO = 'L' or 'l'   A is a lower triangular matrix.
 30 *
 31 *           Unchanged on exit.
 32 *
 33 *  TRANS  - CHARACTER*1.
 34 *           On entry, TRANS specifies the operation to be performed as
 35 *           follows:
 36 *
 37 *              TRANS = 'N' or 'n'   x := A*x.
 38 *
 39 *              TRANS = 'T' or 't'   x := A**T*x.
 40 *
 41 *              TRANS = 'C' or 'c'   x := A**T*x.
 42 *
 43 *           Unchanged on exit.
 44 *
 45 *  DIAG   - CHARACTER*1.
 46 *           On entry, DIAG specifies whether or not A is unit
 47 *           triangular as follows:
 48 *
 49 *              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
 50 *
 51 *              DIAG = 'N' or 'n'   A is not assumed to be unit
 52 *                                  triangular.
 53 *
 54 *           Unchanged on exit.
 55 *
 56 *  N      - INTEGER.
 57 *           On entry, N specifies the order of the matrix A.
 58 *           N must be at least zero.
 59 *           Unchanged on exit.
 60 *
 61 *  A      - REAL             array of DIMENSION ( LDA, n ).
 62 *           Before entry with  UPLO = 'U' or 'u', the leading n by n
 63 *           upper triangular part of the array A must contain the upper
 64 *           triangular matrix and the strictly lower triangular part of
 65 *           A is not referenced.
 66 *           Before entry with UPLO = 'L' or 'l', the leading n by n
 67 *           lower triangular part of the array A must contain the lower
 68 *           triangular matrix and the strictly upper triangular part of
 69 *           A is not referenced.
 70 *           Note that when  DIAG = 'U' or 'u', the diagonal elements of
 71 *           A are not referenced either, but are assumed to be unity.
 72 *           Unchanged on exit.
 73 *
 74 *  LDA    - INTEGER.
 75 *           On entry, LDA specifies the first dimension of A as declared
 76 *           in the calling (sub) program. LDA must be at least
 77 *           max( 1, n ).
 78 *           Unchanged on exit.
 79 *
 80 *  X      - REAL             array of dimension at least
 81 *           ( 1 + ( n - 1 )*abs( INCX ) ).
 82 *           Before entry, the incremented array X must contain the n
 83 *           element vector x. On exit, X is overwritten with the
 84 *           tranformed vector x.
 85 *
 86 *  INCX   - INTEGER.
 87 *           On entry, INCX specifies the increment for the elements of
 88 *           X. INCX must not be zero.
 89 *           Unchanged on exit.
 90 *
 91 *  Further Details
 92 *  ===============
 93 *
 94 *  Level 2 Blas routine.
 95 *  The vector and matrix arguments are not referenced when N = 0, or M = 0
 96 *
 97 *  -- Written on 22-October-1986.
 98 *     Jack Dongarra, Argonne National Lab.
 99 *     Jeremy Du Croz, Nag Central Office.
100 *     Sven Hammarling, Nag Central Office.
101 *     Richard Hanson, Sandia National Labs.
102 *
103 *  =====================================================================
104 *
105 *     .. Parameters ..
106       REAL ZERO
107       PARAMETER (ZERO=0.0E+0)
108 *     ..
109 *     .. Local Scalars ..
110       REAL TEMP
111       INTEGER I,INFO,IX,J,JX,KX
112       LOGICAL NOUNIT
113 *     ..
114 *     .. External Functions ..
115       LOGICAL LSAME
116       EXTERNAL LSAME
117 *     ..
118 *     .. External Subroutines ..
119       EXTERNAL XERBLA
120 *     ..
121 *     .. Intrinsic Functions ..
122       INTRINSIC MAX
123 *     ..
124 *
125 *     Test the input parameters.
126 *
127       INFO = 0
128       IF (.NOT.LSAME(UPLO,'U'.AND. .NOT.LSAME(UPLO,'L')) THEN
129           INFO = 1
130       ELSE IF (.NOT.LSAME(TRANS,'N'.AND. .NOT.LSAME(TRANS,'T'.AND.
131      +         .NOT.LSAME(TRANS,'C')) THEN
132           INFO = 2
133       ELSE IF (.NOT.LSAME(DIAG,'U'.AND. .NOT.LSAME(DIAG,'N')) THEN
134           INFO = 3
135       ELSE IF (N.LT.0THEN
136           INFO = 4
137       ELSE IF (LDA.LT.MAX(1,N)) THEN
138           INFO = 6
139       ELSE IF (INCX.EQ.0THEN
140           INFO = 8
141       END IF
142       IF (INFO.NE.0THEN
143           CALL XERBLA('STRMV ',INFO)
144           RETURN
145       END IF
146 *
147 *     Quick return if possible.
148 *
149       IF (N.EQ.0RETURN
150 *
151       NOUNIT = LSAME(DIAG,'N')
152 *
153 *     Set up the start point in X if the increment is not unity. This
154 *     will be  ( N - 1 )*INCX  too small for descending loops.
155 *
156       IF (INCX.LE.0THEN
157           KX = 1 - (N-1)*INCX
158       ELSE IF (INCX.NE.1THEN
159           KX = 1
160       END IF
161 *
162 *     Start the operations. In this version the elements of A are
163 *     accessed sequentially with one pass through A.
164 *
165       IF (LSAME(TRANS,'N')) THEN
166 *
167 *        Form  x := A*x.
168 *
169           IF (LSAME(UPLO,'U')) THEN
170               IF (INCX.EQ.1THEN
171                   DO 20 J = 1,N
172                       IF (X(J).NE.ZERO) THEN
173                           TEMP = X(J)
174                           DO 10 I = 1,J - 1
175                               X(I) = X(I) + TEMP*A(I,J)
176    10                     CONTINUE
177                           IF (NOUNIT) X(J) = X(J)*A(J,J)
178                       END IF
179    20             CONTINUE
180               ELSE
181                   JX = KX
182                   DO 40 J = 1,N
183                       IF (X(JX).NE.ZERO) THEN
184                           TEMP = X(JX)
185                           IX = KX
186                           DO 30 I = 1,J - 1
187                               X(IX) = X(IX) + TEMP*A(I,J)
188                               IX = IX + INCX
189    30                     CONTINUE
190                           IF (NOUNIT) X(JX) = X(JX)*A(J,J)
191                       END IF
192                       JX = JX + INCX
193    40             CONTINUE
194               END IF
195           ELSE
196               IF (INCX.EQ.1THEN
197                   DO 60 J = N,1,-1
198                       IF (X(J).NE.ZERO) THEN
199                           TEMP = X(J)
200                           DO 50 I = N,J + 1,-1
201                               X(I) = X(I) + TEMP*A(I,J)
202    50                     CONTINUE
203                           IF (NOUNIT) X(J) = X(J)*A(J,J)
204                       END IF
205    60             CONTINUE
206               ELSE
207                   KX = KX + (N-1)*INCX
208                   JX = KX
209                   DO 80 J = N,1,-1
210                       IF (X(JX).NE.ZERO) THEN
211                           TEMP = X(JX)
212                           IX = KX
213                           DO 70 I = N,J + 1,-1
214                               X(IX) = X(IX) + TEMP*A(I,J)
215                               IX = IX - INCX
216    70                     CONTINUE
217                           IF (NOUNIT) X(JX) = X(JX)*A(J,J)
218                       END IF
219                       JX = JX - INCX
220    80             CONTINUE
221               END IF
222           END IF
223       ELSE
224 *
225 *        Form  x := A**T*x.
226 *
227           IF (LSAME(UPLO,'U')) THEN
228               IF (INCX.EQ.1THEN
229                   DO 100 J = N,1,-1
230                       TEMP = X(J)
231                       IF (NOUNIT) TEMP = TEMP*A(J,J)
232                       DO 90 I = J - 1,1,-1
233                           TEMP = TEMP + A(I,J)*X(I)
234    90                 CONTINUE
235                       X(J) = TEMP
236   100             CONTINUE
237               ELSE
238                   JX = KX + (N-1)*INCX
239                   DO 120 J = N,1,-1
240                       TEMP = X(JX)
241                       IX = JX
242                       IF (NOUNIT) TEMP = TEMP*A(J,J)
243                       DO 110 I = J - 1,1,-1
244                           IX = IX - INCX
245                           TEMP = TEMP + A(I,J)*X(IX)
246   110                 CONTINUE
247                       X(JX) = TEMP
248                       JX = JX - INCX
249   120             CONTINUE
250               END IF
251           ELSE
252               IF (INCX.EQ.1THEN
253                   DO 140 J = 1,N
254                       TEMP = X(J)
255                       IF (NOUNIT) TEMP = TEMP*A(J,J)
256                       DO 130 I = J + 1,N
257                           TEMP = TEMP + A(I,J)*X(I)
258   130                 CONTINUE
259                       X(J) = TEMP
260   140             CONTINUE
261               ELSE
262                   JX = KX
263                   DO 160 J = 1,N
264                       TEMP = X(JX)
265                       IX = JX
266                       IF (NOUNIT) TEMP = TEMP*A(J,J)
267                       DO 150 I = J + 1,N
268                           IX = IX + INCX
269                           TEMP = TEMP + A(I,J)*X(IX)
270   150                 CONTINUE
271                       X(JX) = TEMP
272                       JX = JX + INCX
273   160             CONTINUE
274               END IF
275           END IF
276       END IF
277 *
278       RETURN
279 *
280 *     End of STRMV .
281 *
282       END