1       SUBROUTINE STRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
  2 *     .. Scalar Arguments ..
  3       INTEGER INCX,LDA,N
  4       CHARACTER DIAG,TRANS,UPLO
  5 *     ..
  6 *     .. Array Arguments ..
  7       REAL A(LDA,*),X(*)
  8 *     ..
  9 *
 10 *  Purpose
 11 *  =======
 12 *
 13 *  STRSV  solves one of the systems of equations
 14 *
 15 *     A*x = b,   or   A**T*x = b,
 16 *
 17 *  where b and x are n element vectors and A is an n by n unit, or
 18 *  non-unit, upper or lower triangular matrix.
 19 *
 20 *  No test for singularity or near-singularity is included in this
 21 *  routine. Such tests must be performed before calling this routine.
 22 *
 23 *  Arguments
 24 *  ==========
 25 *
 26 *  UPLO   - CHARACTER*1.
 27 *           On entry, UPLO specifies whether the matrix is an upper or
 28 *           lower triangular matrix as follows:
 29 *
 30 *              UPLO = 'U' or 'u'   A is an upper triangular matrix.
 31 *
 32 *              UPLO = 'L' or 'l'   A is a lower triangular matrix.
 33 *
 34 *           Unchanged on exit.
 35 *
 36 *  TRANS  - CHARACTER*1.
 37 *           On entry, TRANS specifies the equations to be solved as
 38 *           follows:
 39 *
 40 *              TRANS = 'N' or 'n'   A*x = b.
 41 *
 42 *              TRANS = 'T' or 't'   A**T*x = b.
 43 *
 44 *              TRANS = 'C' or 'c'   A**T*x = b.
 45 *
 46 *           Unchanged on exit.
 47 *
 48 *  DIAG   - CHARACTER*1.
 49 *           On entry, DIAG specifies whether or not A is unit
 50 *           triangular as follows:
 51 *
 52 *              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
 53 *
 54 *              DIAG = 'N' or 'n'   A is not assumed to be unit
 55 *                                  triangular.
 56 *
 57 *           Unchanged on exit.
 58 *
 59 *  N      - INTEGER.
 60 *           On entry, N specifies the order of the matrix A.
 61 *           N must be at least zero.
 62 *           Unchanged on exit.
 63 *
 64 *  A      - REAL             array of DIMENSION ( LDA, n ).
 65 *           Before entry with  UPLO = 'U' or 'u', the leading n by n
 66 *           upper triangular part of the array A must contain the upper
 67 *           triangular matrix and the strictly lower triangular part of
 68 *           A is not referenced.
 69 *           Before entry with UPLO = 'L' or 'l', the leading n by n
 70 *           lower triangular part of the array A must contain the lower
 71 *           triangular matrix and the strictly upper triangular part of
 72 *           A is not referenced.
 73 *           Note that when  DIAG = 'U' or 'u', the diagonal elements of
 74 *           A are not referenced either, but are assumed to be unity.
 75 *           Unchanged on exit.
 76 *
 77 *  LDA    - INTEGER.
 78 *           On entry, LDA specifies the first dimension of A as declared
 79 *           in the calling (sub) program. LDA must be at least
 80 *           max( 1, n ).
 81 *           Unchanged on exit.
 82 *
 83 *  X      - REAL             array of dimension at least
 84 *           ( 1 + ( n - 1 )*abs( INCX ) ).
 85 *           Before entry, the incremented array X must contain the n
 86 *           element right-hand side vector b. On exit, X is overwritten
 87 *           with the solution vector x.
 88 *
 89 *  INCX   - INTEGER.
 90 *           On entry, INCX specifies the increment for the elements of
 91 *           X. INCX must not be zero.
 92 *           Unchanged on exit.
 93 *
 94 *  Further Details
 95 *  ===============
 96 *
 97 *  Level 2 Blas routine.
 98 *
 99 *  -- Written on 22-October-1986.
100 *     Jack Dongarra, Argonne National Lab.
101 *     Jeremy Du Croz, Nag Central Office.
102 *     Sven Hammarling, Nag Central Office.
103 *     Richard Hanson, Sandia National Labs.
104 *
105 *  =====================================================================
106 *
107 *     .. Parameters ..
108       REAL ZERO
109       PARAMETER (ZERO=0.0E+0)
110 *     ..
111 *     .. Local Scalars ..
112       REAL TEMP
113       INTEGER I,INFO,IX,J,JX,KX
114       LOGICAL NOUNIT
115 *     ..
116 *     .. External Functions ..
117       LOGICAL LSAME
118       EXTERNAL LSAME
119 *     ..
120 *     .. External Subroutines ..
121       EXTERNAL XERBLA
122 *     ..
123 *     .. Intrinsic Functions ..
124       INTRINSIC MAX
125 *     ..
126 *
127 *     Test the input parameters.
128 *
129       INFO = 0
130       IF (.NOT.LSAME(UPLO,'U'.AND. .NOT.LSAME(UPLO,'L')) THEN
131           INFO = 1
132       ELSE IF (.NOT.LSAME(TRANS,'N'.AND. .NOT.LSAME(TRANS,'T'.AND.
133      +         .NOT.LSAME(TRANS,'C')) THEN
134           INFO = 2
135       ELSE IF (.NOT.LSAME(DIAG,'U'.AND. .NOT.LSAME(DIAG,'N')) THEN
136           INFO = 3
137       ELSE IF (N.LT.0THEN
138           INFO = 4
139       ELSE IF (LDA.LT.MAX(1,N)) THEN
140           INFO = 6
141       ELSE IF (INCX.EQ.0THEN
142           INFO = 8
143       END IF
144       IF (INFO.NE.0THEN
145           CALL XERBLA('STRSV ',INFO)
146           RETURN
147       END IF
148 *
149 *     Quick return if possible.
150 *
151       IF (N.EQ.0RETURN
152 *
153       NOUNIT = LSAME(DIAG,'N')
154 *
155 *     Set up the start point in X if the increment is not unity. This
156 *     will be  ( N - 1 )*INCX  too small for descending loops.
157 *
158       IF (INCX.LE.0THEN
159           KX = 1 - (N-1)*INCX
160       ELSE IF (INCX.NE.1THEN
161           KX = 1
162       END IF
163 *
164 *     Start the operations. In this version the elements of A are
165 *     accessed sequentially with one pass through A.
166 *
167       IF (LSAME(TRANS,'N')) THEN
168 *
169 *        Form  x := inv( A )*x.
170 *
171           IF (LSAME(UPLO,'U')) THEN
172               IF (INCX.EQ.1THEN
173                   DO 20 J = N,1,-1
174                       IF (X(J).NE.ZERO) THEN
175                           IF (NOUNIT) X(J) = X(J)/A(J,J)
176                           TEMP = X(J)
177                           DO 10 I = J - 1,1,-1
178                               X(I) = X(I) - TEMP*A(I,J)
179    10                     CONTINUE
180                       END IF
181    20             CONTINUE
182               ELSE
183                   JX = KX + (N-1)*INCX
184                   DO 40 J = N,1,-1
185                       IF (X(JX).NE.ZERO) THEN
186                           IF (NOUNIT) X(JX) = X(JX)/A(J,J)
187                           TEMP = X(JX)
188                           IX = JX
189                           DO 30 I = J - 1,1,-1
190                               IX = IX - INCX
191                               X(IX) = X(IX) - TEMP*A(I,J)
192    30                     CONTINUE
193                       END IF
194                       JX = JX - INCX
195    40             CONTINUE
196               END IF
197           ELSE
198               IF (INCX.EQ.1THEN
199                   DO 60 J = 1,N
200                       IF (X(J).NE.ZERO) THEN
201                           IF (NOUNIT) X(J) = X(J)/A(J,J)
202                           TEMP = X(J)
203                           DO 50 I = J + 1,N
204                               X(I) = X(I) - TEMP*A(I,J)
205    50                     CONTINUE
206                       END IF
207    60             CONTINUE
208               ELSE
209                   JX = KX
210                   DO 80 J = 1,N
211                       IF (X(JX).NE.ZERO) THEN
212                           IF (NOUNIT) X(JX) = X(JX)/A(J,J)
213                           TEMP = X(JX)
214                           IX = JX
215                           DO 70 I = J + 1,N
216                               IX = IX + INCX
217                               X(IX) = X(IX) - TEMP*A(I,J)
218    70                     CONTINUE
219                       END IF
220                       JX = JX + INCX
221    80             CONTINUE
222               END IF
223           END IF
224       ELSE
225 *
226 *        Form  x := inv( A**T )*x.
227 *
228           IF (LSAME(UPLO,'U')) THEN
229               IF (INCX.EQ.1THEN
230                   DO 100 J = 1,N
231                       TEMP = X(J)
232                       DO 90 I = 1,J - 1
233                           TEMP = TEMP - A(I,J)*X(I)
234    90                 CONTINUE
235                       IF (NOUNIT) TEMP = TEMP/A(J,J)
236                       X(J) = TEMP
237   100             CONTINUE
238               ELSE
239                   JX = KX
240                   DO 120 J = 1,N
241                       TEMP = X(JX)
242                       IX = KX
243                       DO 110 I = 1,J - 1
244                           TEMP = TEMP - A(I,J)*X(IX)
245                           IX = IX + INCX
246   110                 CONTINUE
247                       IF (NOUNIT) TEMP = TEMP/A(J,J)
248                       X(JX) = TEMP
249                       JX = JX + INCX
250   120             CONTINUE
251               END IF
252           ELSE
253               IF (INCX.EQ.1THEN
254                   DO 140 J = N,1,-1
255                       TEMP = X(J)
256                       DO 130 I = N,J + 1,-1
257                           TEMP = TEMP - A(I,J)*X(I)
258   130                 CONTINUE
259                       IF (NOUNIT) TEMP = TEMP/A(J,J)
260                       X(J) = TEMP
261   140             CONTINUE
262               ELSE
263                   KX = KX + (N-1)*INCX
264                   JX = KX
265                   DO 160 J = N,1,-1
266                       TEMP = X(JX)
267                       IX = KX
268                       DO 150 I = N,J + 1,-1
269                           TEMP = TEMP - A(I,J)*X(IX)
270                           IX = IX - INCX
271   150                 CONTINUE
272                       IF (NOUNIT) TEMP = TEMP/A(J,J)
273                       X(JX) = TEMP
274                       JX = JX - INCX
275   160             CONTINUE
276               END IF
277           END IF
278       END IF
279 *
280       RETURN
281 *
282 *     End of STRSV .
283 *
284       END