1 SUBROUTINE ZGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
2 * .. Scalar Arguments ..
3 DOUBLE COMPLEX ALPHA,BETA
4 INTEGER K,LDA,LDB,LDC,M,N
5 CHARACTER TRANSA,TRANSB
6 * ..
7 * .. Array Arguments ..
8 DOUBLE COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
9 * ..
10 *
11 * Purpose
12 * =======
13 *
14 * ZGEMM performs one of the matrix-matrix operations
15 *
16 * C := alpha*op( A )*op( B ) + beta*C,
17 *
18 * where op( X ) is one of
19 *
20 * op( X ) = X or op( X ) = X**T or op( X ) = X**H,
21 *
22 * alpha and beta are scalars, and A, B and C are matrices, with op( A )
23 * an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
24 *
25 * Arguments
26 * ==========
27 *
28 * TRANSA - CHARACTER*1.
29 * On entry, TRANSA specifies the form of op( A ) to be used in
30 * the matrix multiplication as follows:
31 *
32 * TRANSA = 'N' or 'n', op( A ) = A.
33 *
34 * TRANSA = 'T' or 't', op( A ) = A**T.
35 *
36 * TRANSA = 'C' or 'c', op( A ) = A**H.
37 *
38 * Unchanged on exit.
39 *
40 * TRANSB - CHARACTER*1.
41 * On entry, TRANSB specifies the form of op( B ) to be used in
42 * the matrix multiplication as follows:
43 *
44 * TRANSB = 'N' or 'n', op( B ) = B.
45 *
46 * TRANSB = 'T' or 't', op( B ) = B**T.
47 *
48 * TRANSB = 'C' or 'c', op( B ) = B**H.
49 *
50 * Unchanged on exit.
51 *
52 * M - INTEGER.
53 * On entry, M specifies the number of rows of the matrix
54 * op( A ) and of the matrix C. M must be at least zero.
55 * Unchanged on exit.
56 *
57 * N - INTEGER.
58 * On entry, N specifies the number of columns of the matrix
59 * op( B ) and the number of columns of the matrix C. N must be
60 * at least zero.
61 * Unchanged on exit.
62 *
63 * K - INTEGER.
64 * On entry, K specifies the number of columns of the matrix
65 * op( A ) and the number of rows of the matrix op( B ). K must
66 * be at least zero.
67 * Unchanged on exit.
68 *
69 * ALPHA - COMPLEX*16 .
70 * On entry, ALPHA specifies the scalar alpha.
71 * Unchanged on exit.
72 *
73 * A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is
74 * k when TRANSA = 'N' or 'n', and is m otherwise.
75 * Before entry with TRANSA = 'N' or 'n', the leading m by k
76 * part of the array A must contain the matrix A, otherwise
77 * the leading k by m part of the array A must contain the
78 * matrix A.
79 * Unchanged on exit.
80 *
81 * LDA - INTEGER.
82 * On entry, LDA specifies the first dimension of A as declared
83 * in the calling (sub) program. When TRANSA = 'N' or 'n' then
84 * LDA must be at least max( 1, m ), otherwise LDA must be at
85 * least max( 1, k ).
86 * Unchanged on exit.
87 *
88 * B - COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is
89 * n when TRANSB = 'N' or 'n', and is k otherwise.
90 * Before entry with TRANSB = 'N' or 'n', the leading k by n
91 * part of the array B must contain the matrix B, otherwise
92 * the leading n by k part of the array B must contain the
93 * matrix B.
94 * Unchanged on exit.
95 *
96 * LDB - INTEGER.
97 * On entry, LDB specifies the first dimension of B as declared
98 * in the calling (sub) program. When TRANSB = 'N' or 'n' then
99 * LDB must be at least max( 1, k ), otherwise LDB must be at
100 * least max( 1, n ).
101 * Unchanged on exit.
102 *
103 * BETA - COMPLEX*16 .
104 * On entry, BETA specifies the scalar beta. When BETA is
105 * supplied as zero then C need not be set on input.
106 * Unchanged on exit.
107 *
108 * C - COMPLEX*16 array of DIMENSION ( LDC, n ).
109 * Before entry, the leading m by n part of the array C must
110 * contain the matrix C, except when beta is zero, in which
111 * case C need not be set on entry.
112 * On exit, the array C is overwritten by the m by n matrix
113 * ( alpha*op( A )*op( B ) + beta*C ).
114 *
115 * LDC - INTEGER.
116 * On entry, LDC specifies the first dimension of C as declared
117 * in the calling (sub) program. LDC must be at least
118 * max( 1, m ).
119 * Unchanged on exit.
120 *
121 * Further Details
122 * ===============
123 *
124 * Level 3 Blas routine.
125 *
126 * -- Written on 8-February-1989.
127 * Jack Dongarra, Argonne National Laboratory.
128 * Iain Duff, AERE Harwell.
129 * Jeremy Du Croz, Numerical Algorithms Group Ltd.
130 * Sven Hammarling, Numerical Algorithms Group Ltd.
131 *
132 * =====================================================================
133 *
134 * .. External Functions ..
135 LOGICAL LSAME
136 EXTERNAL LSAME
137 * ..
138 * .. External Subroutines ..
139 EXTERNAL XERBLA
140 * ..
141 * .. Intrinsic Functions ..
142 INTRINSIC DCONJG,MAX
143 * ..
144 * .. Local Scalars ..
145 DOUBLE COMPLEX TEMP
146 INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB
147 LOGICAL CONJA,CONJB,NOTA,NOTB
148 * ..
149 * .. Parameters ..
150 DOUBLE COMPLEX ONE
151 PARAMETER (ONE= (1.0D+0,0.0D+0))
152 DOUBLE COMPLEX ZERO
153 PARAMETER (ZERO= (0.0D+0,0.0D+0))
154 * ..
155 *
156 * Set NOTA and NOTB as true if A and B respectively are not
157 * conjugated or transposed, set CONJA and CONJB as true if A and
158 * B respectively are to be transposed but not conjugated and set
159 * NROWA, NCOLA and NROWB as the number of rows and columns of A
160 * and the number of rows of B respectively.
161 *
162 NOTA = LSAME(TRANSA,'N')
163 NOTB = LSAME(TRANSB,'N')
164 CONJA = LSAME(TRANSA,'C')
165 CONJB = LSAME(TRANSB,'C')
166 IF (NOTA) THEN
167 NROWA = M
168 NCOLA = K
169 ELSE
170 NROWA = K
171 NCOLA = M
172 END IF
173 IF (NOTB) THEN
174 NROWB = K
175 ELSE
176 NROWB = N
177 END IF
178 *
179 * Test the input parameters.
180 *
181 INFO = 0
182 IF ((.NOT.NOTA) .AND. (.NOT.CONJA) .AND.
183 + (.NOT.LSAME(TRANSA,'T'))) THEN
184 INFO = 1
185 ELSE IF ((.NOT.NOTB) .AND. (.NOT.CONJB) .AND.
186 + (.NOT.LSAME(TRANSB,'T'))) THEN
187 INFO = 2
188 ELSE IF (M.LT.0) THEN
189 INFO = 3
190 ELSE IF (N.LT.0) THEN
191 INFO = 4
192 ELSE IF (K.LT.0) THEN
193 INFO = 5
194 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
195 INFO = 8
196 ELSE IF (LDB.LT.MAX(1,NROWB)) THEN
197 INFO = 10
198 ELSE IF (LDC.LT.MAX(1,M)) THEN
199 INFO = 13
200 END IF
201 IF (INFO.NE.0) THEN
202 CALL XERBLA('ZGEMM ',INFO)
203 RETURN
204 END IF
205 *
206 * Quick return if possible.
207 *
208 IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
209 + (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
210 *
211 * And when alpha.eq.zero.
212 *
213 IF (ALPHA.EQ.ZERO) THEN
214 IF (BETA.EQ.ZERO) THEN
215 DO 20 J = 1,N
216 DO 10 I = 1,M
217 C(I,J) = ZERO
218 10 CONTINUE
219 20 CONTINUE
220 ELSE
221 DO 40 J = 1,N
222 DO 30 I = 1,M
223 C(I,J) = BETA*C(I,J)
224 30 CONTINUE
225 40 CONTINUE
226 END IF
227 RETURN
228 END IF
229 *
230 * Start the operations.
231 *
232 IF (NOTB) THEN
233 IF (NOTA) THEN
234 *
235 * Form C := alpha*A*B + beta*C.
236 *
237 DO 90 J = 1,N
238 IF (BETA.EQ.ZERO) THEN
239 DO 50 I = 1,M
240 C(I,J) = ZERO
241 50 CONTINUE
242 ELSE IF (BETA.NE.ONE) THEN
243 DO 60 I = 1,M
244 C(I,J) = BETA*C(I,J)
245 60 CONTINUE
246 END IF
247 DO 80 L = 1,K
248 IF (B(L,J).NE.ZERO) THEN
249 TEMP = ALPHA*B(L,J)
250 DO 70 I = 1,M
251 C(I,J) = C(I,J) + TEMP*A(I,L)
252 70 CONTINUE
253 END IF
254 80 CONTINUE
255 90 CONTINUE
256 ELSE IF (CONJA) THEN
257 *
258 * Form C := alpha*A**H*B + beta*C.
259 *
260 DO 120 J = 1,N
261 DO 110 I = 1,M
262 TEMP = ZERO
263 DO 100 L = 1,K
264 TEMP = TEMP + DCONJG(A(L,I))*B(L,J)
265 100 CONTINUE
266 IF (BETA.EQ.ZERO) THEN
267 C(I,J) = ALPHA*TEMP
268 ELSE
269 C(I,J) = ALPHA*TEMP + BETA*C(I,J)
270 END IF
271 110 CONTINUE
272 120 CONTINUE
273 ELSE
274 *
275 * Form C := alpha*A**T*B + beta*C
276 *
277 DO 150 J = 1,N
278 DO 140 I = 1,M
279 TEMP = ZERO
280 DO 130 L = 1,K
281 TEMP = TEMP + A(L,I)*B(L,J)
282 130 CONTINUE
283 IF (BETA.EQ.ZERO) THEN
284 C(I,J) = ALPHA*TEMP
285 ELSE
286 C(I,J) = ALPHA*TEMP + BETA*C(I,J)
287 END IF
288 140 CONTINUE
289 150 CONTINUE
290 END IF
291 ELSE IF (NOTA) THEN
292 IF (CONJB) THEN
293 *
294 * Form C := alpha*A*B**H + beta*C.
295 *
296 DO 200 J = 1,N
297 IF (BETA.EQ.ZERO) THEN
298 DO 160 I = 1,M
299 C(I,J) = ZERO
300 160 CONTINUE
301 ELSE IF (BETA.NE.ONE) THEN
302 DO 170 I = 1,M
303 C(I,J) = BETA*C(I,J)
304 170 CONTINUE
305 END IF
306 DO 190 L = 1,K
307 IF (B(J,L).NE.ZERO) THEN
308 TEMP = ALPHA*DCONJG(B(J,L))
309 DO 180 I = 1,M
310 C(I,J) = C(I,J) + TEMP*A(I,L)
311 180 CONTINUE
312 END IF
313 190 CONTINUE
314 200 CONTINUE
315 ELSE
316 *
317 * Form C := alpha*A*B**T + beta*C
318 *
319 DO 250 J = 1,N
320 IF (BETA.EQ.ZERO) THEN
321 DO 210 I = 1,M
322 C(I,J) = ZERO
323 210 CONTINUE
324 ELSE IF (BETA.NE.ONE) THEN
325 DO 220 I = 1,M
326 C(I,J) = BETA*C(I,J)
327 220 CONTINUE
328 END IF
329 DO 240 L = 1,K
330 IF (B(J,L).NE.ZERO) THEN
331 TEMP = ALPHA*B(J,L)
332 DO 230 I = 1,M
333 C(I,J) = C(I,J) + TEMP*A(I,L)
334 230 CONTINUE
335 END IF
336 240 CONTINUE
337 250 CONTINUE
338 END IF
339 ELSE IF (CONJA) THEN
340 IF (CONJB) THEN
341 *
342 * Form C := alpha*A**H*B**H + beta*C.
343 *
344 DO 280 J = 1,N
345 DO 270 I = 1,M
346 TEMP = ZERO
347 DO 260 L = 1,K
348 TEMP = TEMP + DCONJG(A(L,I))*DCONJG(B(J,L))
349 260 CONTINUE
350 IF (BETA.EQ.ZERO) THEN
351 C(I,J) = ALPHA*TEMP
352 ELSE
353 C(I,J) = ALPHA*TEMP + BETA*C(I,J)
354 END IF
355 270 CONTINUE
356 280 CONTINUE
357 ELSE
358 *
359 * Form C := alpha*A**H*B**T + beta*C
360 *
361 DO 310 J = 1,N
362 DO 300 I = 1,M
363 TEMP = ZERO
364 DO 290 L = 1,K
365 TEMP = TEMP + DCONJG(A(L,I))*B(J,L)
366 290 CONTINUE
367 IF (BETA.EQ.ZERO) THEN
368 C(I,J) = ALPHA*TEMP
369 ELSE
370 C(I,J) = ALPHA*TEMP + BETA*C(I,J)
371 END IF
372 300 CONTINUE
373 310 CONTINUE
374 END IF
375 ELSE
376 IF (CONJB) THEN
377 *
378 * Form C := alpha*A**T*B**H + beta*C
379 *
380 DO 340 J = 1,N
381 DO 330 I = 1,M
382 TEMP = ZERO
383 DO 320 L = 1,K
384 TEMP = TEMP + A(L,I)*DCONJG(B(J,L))
385 320 CONTINUE
386 IF (BETA.EQ.ZERO) THEN
387 C(I,J) = ALPHA*TEMP
388 ELSE
389 C(I,J) = ALPHA*TEMP + BETA*C(I,J)
390 END IF
391 330 CONTINUE
392 340 CONTINUE
393 ELSE
394 *
395 * Form C := alpha*A**T*B**T + beta*C
396 *
397 DO 370 J = 1,N
398 DO 360 I = 1,M
399 TEMP = ZERO
400 DO 350 L = 1,K
401 TEMP = TEMP + A(L,I)*B(J,L)
402 350 CONTINUE
403 IF (BETA.EQ.ZERO) THEN
404 C(I,J) = ALPHA*TEMP
405 ELSE
406 C(I,J) = ALPHA*TEMP + BETA*C(I,J)
407 END IF
408 360 CONTINUE
409 370 CONTINUE
410 END IF
411 END IF
412 *
413 RETURN
414 *
415 * End of ZGEMM .
416 *
417 END
2 * .. Scalar Arguments ..
3 DOUBLE COMPLEX ALPHA,BETA
4 INTEGER K,LDA,LDB,LDC,M,N
5 CHARACTER TRANSA,TRANSB
6 * ..
7 * .. Array Arguments ..
8 DOUBLE COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
9 * ..
10 *
11 * Purpose
12 * =======
13 *
14 * ZGEMM performs one of the matrix-matrix operations
15 *
16 * C := alpha*op( A )*op( B ) + beta*C,
17 *
18 * where op( X ) is one of
19 *
20 * op( X ) = X or op( X ) = X**T or op( X ) = X**H,
21 *
22 * alpha and beta are scalars, and A, B and C are matrices, with op( A )
23 * an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
24 *
25 * Arguments
26 * ==========
27 *
28 * TRANSA - CHARACTER*1.
29 * On entry, TRANSA specifies the form of op( A ) to be used in
30 * the matrix multiplication as follows:
31 *
32 * TRANSA = 'N' or 'n', op( A ) = A.
33 *
34 * TRANSA = 'T' or 't', op( A ) = A**T.
35 *
36 * TRANSA = 'C' or 'c', op( A ) = A**H.
37 *
38 * Unchanged on exit.
39 *
40 * TRANSB - CHARACTER*1.
41 * On entry, TRANSB specifies the form of op( B ) to be used in
42 * the matrix multiplication as follows:
43 *
44 * TRANSB = 'N' or 'n', op( B ) = B.
45 *
46 * TRANSB = 'T' or 't', op( B ) = B**T.
47 *
48 * TRANSB = 'C' or 'c', op( B ) = B**H.
49 *
50 * Unchanged on exit.
51 *
52 * M - INTEGER.
53 * On entry, M specifies the number of rows of the matrix
54 * op( A ) and of the matrix C. M must be at least zero.
55 * Unchanged on exit.
56 *
57 * N - INTEGER.
58 * On entry, N specifies the number of columns of the matrix
59 * op( B ) and the number of columns of the matrix C. N must be
60 * at least zero.
61 * Unchanged on exit.
62 *
63 * K - INTEGER.
64 * On entry, K specifies the number of columns of the matrix
65 * op( A ) and the number of rows of the matrix op( B ). K must
66 * be at least zero.
67 * Unchanged on exit.
68 *
69 * ALPHA - COMPLEX*16 .
70 * On entry, ALPHA specifies the scalar alpha.
71 * Unchanged on exit.
72 *
73 * A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is
74 * k when TRANSA = 'N' or 'n', and is m otherwise.
75 * Before entry with TRANSA = 'N' or 'n', the leading m by k
76 * part of the array A must contain the matrix A, otherwise
77 * the leading k by m part of the array A must contain the
78 * matrix A.
79 * Unchanged on exit.
80 *
81 * LDA - INTEGER.
82 * On entry, LDA specifies the first dimension of A as declared
83 * in the calling (sub) program. When TRANSA = 'N' or 'n' then
84 * LDA must be at least max( 1, m ), otherwise LDA must be at
85 * least max( 1, k ).
86 * Unchanged on exit.
87 *
88 * B - COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is
89 * n when TRANSB = 'N' or 'n', and is k otherwise.
90 * Before entry with TRANSB = 'N' or 'n', the leading k by n
91 * part of the array B must contain the matrix B, otherwise
92 * the leading n by k part of the array B must contain the
93 * matrix B.
94 * Unchanged on exit.
95 *
96 * LDB - INTEGER.
97 * On entry, LDB specifies the first dimension of B as declared
98 * in the calling (sub) program. When TRANSB = 'N' or 'n' then
99 * LDB must be at least max( 1, k ), otherwise LDB must be at
100 * least max( 1, n ).
101 * Unchanged on exit.
102 *
103 * BETA - COMPLEX*16 .
104 * On entry, BETA specifies the scalar beta. When BETA is
105 * supplied as zero then C need not be set on input.
106 * Unchanged on exit.
107 *
108 * C - COMPLEX*16 array of DIMENSION ( LDC, n ).
109 * Before entry, the leading m by n part of the array C must
110 * contain the matrix C, except when beta is zero, in which
111 * case C need not be set on entry.
112 * On exit, the array C is overwritten by the m by n matrix
113 * ( alpha*op( A )*op( B ) + beta*C ).
114 *
115 * LDC - INTEGER.
116 * On entry, LDC specifies the first dimension of C as declared
117 * in the calling (sub) program. LDC must be at least
118 * max( 1, m ).
119 * Unchanged on exit.
120 *
121 * Further Details
122 * ===============
123 *
124 * Level 3 Blas routine.
125 *
126 * -- Written on 8-February-1989.
127 * Jack Dongarra, Argonne National Laboratory.
128 * Iain Duff, AERE Harwell.
129 * Jeremy Du Croz, Numerical Algorithms Group Ltd.
130 * Sven Hammarling, Numerical Algorithms Group Ltd.
131 *
132 * =====================================================================
133 *
134 * .. External Functions ..
135 LOGICAL LSAME
136 EXTERNAL LSAME
137 * ..
138 * .. External Subroutines ..
139 EXTERNAL XERBLA
140 * ..
141 * .. Intrinsic Functions ..
142 INTRINSIC DCONJG,MAX
143 * ..
144 * .. Local Scalars ..
145 DOUBLE COMPLEX TEMP
146 INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB
147 LOGICAL CONJA,CONJB,NOTA,NOTB
148 * ..
149 * .. Parameters ..
150 DOUBLE COMPLEX ONE
151 PARAMETER (ONE= (1.0D+0,0.0D+0))
152 DOUBLE COMPLEX ZERO
153 PARAMETER (ZERO= (0.0D+0,0.0D+0))
154 * ..
155 *
156 * Set NOTA and NOTB as true if A and B respectively are not
157 * conjugated or transposed, set CONJA and CONJB as true if A and
158 * B respectively are to be transposed but not conjugated and set
159 * NROWA, NCOLA and NROWB as the number of rows and columns of A
160 * and the number of rows of B respectively.
161 *
162 NOTA = LSAME(TRANSA,'N')
163 NOTB = LSAME(TRANSB,'N')
164 CONJA = LSAME(TRANSA,'C')
165 CONJB = LSAME(TRANSB,'C')
166 IF (NOTA) THEN
167 NROWA = M
168 NCOLA = K
169 ELSE
170 NROWA = K
171 NCOLA = M
172 END IF
173 IF (NOTB) THEN
174 NROWB = K
175 ELSE
176 NROWB = N
177 END IF
178 *
179 * Test the input parameters.
180 *
181 INFO = 0
182 IF ((.NOT.NOTA) .AND. (.NOT.CONJA) .AND.
183 + (.NOT.LSAME(TRANSA,'T'))) THEN
184 INFO = 1
185 ELSE IF ((.NOT.NOTB) .AND. (.NOT.CONJB) .AND.
186 + (.NOT.LSAME(TRANSB,'T'))) THEN
187 INFO = 2
188 ELSE IF (M.LT.0) THEN
189 INFO = 3
190 ELSE IF (N.LT.0) THEN
191 INFO = 4
192 ELSE IF (K.LT.0) THEN
193 INFO = 5
194 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
195 INFO = 8
196 ELSE IF (LDB.LT.MAX(1,NROWB)) THEN
197 INFO = 10
198 ELSE IF (LDC.LT.MAX(1,M)) THEN
199 INFO = 13
200 END IF
201 IF (INFO.NE.0) THEN
202 CALL XERBLA('ZGEMM ',INFO)
203 RETURN
204 END IF
205 *
206 * Quick return if possible.
207 *
208 IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
209 + (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
210 *
211 * And when alpha.eq.zero.
212 *
213 IF (ALPHA.EQ.ZERO) THEN
214 IF (BETA.EQ.ZERO) THEN
215 DO 20 J = 1,N
216 DO 10 I = 1,M
217 C(I,J) = ZERO
218 10 CONTINUE
219 20 CONTINUE
220 ELSE
221 DO 40 J = 1,N
222 DO 30 I = 1,M
223 C(I,J) = BETA*C(I,J)
224 30 CONTINUE
225 40 CONTINUE
226 END IF
227 RETURN
228 END IF
229 *
230 * Start the operations.
231 *
232 IF (NOTB) THEN
233 IF (NOTA) THEN
234 *
235 * Form C := alpha*A*B + beta*C.
236 *
237 DO 90 J = 1,N
238 IF (BETA.EQ.ZERO) THEN
239 DO 50 I = 1,M
240 C(I,J) = ZERO
241 50 CONTINUE
242 ELSE IF (BETA.NE.ONE) THEN
243 DO 60 I = 1,M
244 C(I,J) = BETA*C(I,J)
245 60 CONTINUE
246 END IF
247 DO 80 L = 1,K
248 IF (B(L,J).NE.ZERO) THEN
249 TEMP = ALPHA*B(L,J)
250 DO 70 I = 1,M
251 C(I,J) = C(I,J) + TEMP*A(I,L)
252 70 CONTINUE
253 END IF
254 80 CONTINUE
255 90 CONTINUE
256 ELSE IF (CONJA) THEN
257 *
258 * Form C := alpha*A**H*B + beta*C.
259 *
260 DO 120 J = 1,N
261 DO 110 I = 1,M
262 TEMP = ZERO
263 DO 100 L = 1,K
264 TEMP = TEMP + DCONJG(A(L,I))*B(L,J)
265 100 CONTINUE
266 IF (BETA.EQ.ZERO) THEN
267 C(I,J) = ALPHA*TEMP
268 ELSE
269 C(I,J) = ALPHA*TEMP + BETA*C(I,J)
270 END IF
271 110 CONTINUE
272 120 CONTINUE
273 ELSE
274 *
275 * Form C := alpha*A**T*B + beta*C
276 *
277 DO 150 J = 1,N
278 DO 140 I = 1,M
279 TEMP = ZERO
280 DO 130 L = 1,K
281 TEMP = TEMP + A(L,I)*B(L,J)
282 130 CONTINUE
283 IF (BETA.EQ.ZERO) THEN
284 C(I,J) = ALPHA*TEMP
285 ELSE
286 C(I,J) = ALPHA*TEMP + BETA*C(I,J)
287 END IF
288 140 CONTINUE
289 150 CONTINUE
290 END IF
291 ELSE IF (NOTA) THEN
292 IF (CONJB) THEN
293 *
294 * Form C := alpha*A*B**H + beta*C.
295 *
296 DO 200 J = 1,N
297 IF (BETA.EQ.ZERO) THEN
298 DO 160 I = 1,M
299 C(I,J) = ZERO
300 160 CONTINUE
301 ELSE IF (BETA.NE.ONE) THEN
302 DO 170 I = 1,M
303 C(I,J) = BETA*C(I,J)
304 170 CONTINUE
305 END IF
306 DO 190 L = 1,K
307 IF (B(J,L).NE.ZERO) THEN
308 TEMP = ALPHA*DCONJG(B(J,L))
309 DO 180 I = 1,M
310 C(I,J) = C(I,J) + TEMP*A(I,L)
311 180 CONTINUE
312 END IF
313 190 CONTINUE
314 200 CONTINUE
315 ELSE
316 *
317 * Form C := alpha*A*B**T + beta*C
318 *
319 DO 250 J = 1,N
320 IF (BETA.EQ.ZERO) THEN
321 DO 210 I = 1,M
322 C(I,J) = ZERO
323 210 CONTINUE
324 ELSE IF (BETA.NE.ONE) THEN
325 DO 220 I = 1,M
326 C(I,J) = BETA*C(I,J)
327 220 CONTINUE
328 END IF
329 DO 240 L = 1,K
330 IF (B(J,L).NE.ZERO) THEN
331 TEMP = ALPHA*B(J,L)
332 DO 230 I = 1,M
333 C(I,J) = C(I,J) + TEMP*A(I,L)
334 230 CONTINUE
335 END IF
336 240 CONTINUE
337 250 CONTINUE
338 END IF
339 ELSE IF (CONJA) THEN
340 IF (CONJB) THEN
341 *
342 * Form C := alpha*A**H*B**H + beta*C.
343 *
344 DO 280 J = 1,N
345 DO 270 I = 1,M
346 TEMP = ZERO
347 DO 260 L = 1,K
348 TEMP = TEMP + DCONJG(A(L,I))*DCONJG(B(J,L))
349 260 CONTINUE
350 IF (BETA.EQ.ZERO) THEN
351 C(I,J) = ALPHA*TEMP
352 ELSE
353 C(I,J) = ALPHA*TEMP + BETA*C(I,J)
354 END IF
355 270 CONTINUE
356 280 CONTINUE
357 ELSE
358 *
359 * Form C := alpha*A**H*B**T + beta*C
360 *
361 DO 310 J = 1,N
362 DO 300 I = 1,M
363 TEMP = ZERO
364 DO 290 L = 1,K
365 TEMP = TEMP + DCONJG(A(L,I))*B(J,L)
366 290 CONTINUE
367 IF (BETA.EQ.ZERO) THEN
368 C(I,J) = ALPHA*TEMP
369 ELSE
370 C(I,J) = ALPHA*TEMP + BETA*C(I,J)
371 END IF
372 300 CONTINUE
373 310 CONTINUE
374 END IF
375 ELSE
376 IF (CONJB) THEN
377 *
378 * Form C := alpha*A**T*B**H + beta*C
379 *
380 DO 340 J = 1,N
381 DO 330 I = 1,M
382 TEMP = ZERO
383 DO 320 L = 1,K
384 TEMP = TEMP + A(L,I)*DCONJG(B(J,L))
385 320 CONTINUE
386 IF (BETA.EQ.ZERO) THEN
387 C(I,J) = ALPHA*TEMP
388 ELSE
389 C(I,J) = ALPHA*TEMP + BETA*C(I,J)
390 END IF
391 330 CONTINUE
392 340 CONTINUE
393 ELSE
394 *
395 * Form C := alpha*A**T*B**T + beta*C
396 *
397 DO 370 J = 1,N
398 DO 360 I = 1,M
399 TEMP = ZERO
400 DO 350 L = 1,K
401 TEMP = TEMP + A(L,I)*B(J,L)
402 350 CONTINUE
403 IF (BETA.EQ.ZERO) THEN
404 C(I,J) = ALPHA*TEMP
405 ELSE
406 C(I,J) = ALPHA*TEMP + BETA*C(I,J)
407 END IF
408 360 CONTINUE
409 370 CONTINUE
410 END IF
411 END IF
412 *
413 RETURN
414 *
415 * End of ZGEMM .
416 *
417 END