1       SUBROUTINE ZHEMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
  2 *     .. Scalar Arguments ..
  3       DOUBLE COMPLEX ALPHA,BETA
  4       INTEGER LDA,LDB,LDC,M,N
  5       CHARACTER SIDE,UPLO
  6 *     ..
  7 *     .. Array Arguments ..
  8       DOUBLE COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
  9 *     ..
 10 *
 11 *  Purpose
 12 *  =======
 13 *
 14 *  ZHEMM  performs one of the matrix-matrix operations
 15 *
 16 *     C := alpha*A*B + beta*C,
 17 *
 18 *  or
 19 *
 20 *     C := alpha*B*A + beta*C,
 21 *
 22 *  where alpha and beta are scalars, A is an hermitian matrix and  B and
 23 *  C are m by n matrices.
 24 *
 25 *  Arguments
 26 *  ==========
 27 *
 28 *  SIDE   - CHARACTER*1.
 29 *           On entry,  SIDE  specifies whether  the  hermitian matrix  A
 30 *           appears on the  left or right  in the  operation as follows:
 31 *
 32 *              SIDE = 'L' or 'l'   C := alpha*A*B + beta*C,
 33 *
 34 *              SIDE = 'R' or 'r'   C := alpha*B*A + beta*C,
 35 *
 36 *           Unchanged on exit.
 37 *
 38 *  UPLO   - CHARACTER*1.
 39 *           On  entry,   UPLO  specifies  whether  the  upper  or  lower
 40 *           triangular  part  of  the  hermitian  matrix   A  is  to  be
 41 *           referenced as follows:
 42 *
 43 *              UPLO = 'U' or 'u'   Only the upper triangular part of the
 44 *                                  hermitian matrix is to be referenced.
 45 *
 46 *              UPLO = 'L' or 'l'   Only the lower triangular part of the
 47 *                                  hermitian matrix is to be referenced.
 48 *
 49 *           Unchanged on exit.
 50 *
 51 *  M      - INTEGER.
 52 *           On entry,  M  specifies the number of rows of the matrix  C.
 53 *           M  must be at least zero.
 54 *           Unchanged on exit.
 55 *
 56 *  N      - INTEGER.
 57 *           On entry, N specifies the number of columns of the matrix C.
 58 *           N  must be at least zero.
 59 *           Unchanged on exit.
 60 *
 61 *  ALPHA  - COMPLEX*16      .
 62 *           On entry, ALPHA specifies the scalar alpha.
 63 *           Unchanged on exit.
 64 *
 65 *  A      - COMPLEX*16       array of DIMENSION ( LDA, ka ), where ka is
 66 *           m  when  SIDE = 'L' or 'l'  and is n  otherwise.
 67 *           Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of
 68 *           the array  A  must contain the  hermitian matrix,  such that
 69 *           when  UPLO = 'U' or 'u', the leading m by m upper triangular
 70 *           part of the array  A  must contain the upper triangular part
 71 *           of the  hermitian matrix and the  strictly  lower triangular
 72 *           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
 73 *           the leading  m by m  lower triangular part  of the  array  A
 74 *           must  contain  the  lower triangular part  of the  hermitian
 75 *           matrix and the  strictly upper triangular part of  A  is not
 76 *           referenced.
 77 *           Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of
 78 *           the array  A  must contain the  hermitian matrix,  such that
 79 *           when  UPLO = 'U' or 'u', the leading n by n upper triangular
 80 *           part of the array  A  must contain the upper triangular part
 81 *           of the  hermitian matrix and the  strictly  lower triangular
 82 *           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
 83 *           the leading  n by n  lower triangular part  of the  array  A
 84 *           must  contain  the  lower triangular part  of the  hermitian
 85 *           matrix and the  strictly upper triangular part of  A  is not
 86 *           referenced.
 87 *           Note that the imaginary parts  of the diagonal elements need
 88 *           not be set, they are assumed to be zero.
 89 *           Unchanged on exit.
 90 *
 91 *  LDA    - INTEGER.
 92 *           On entry, LDA specifies the first dimension of A as declared
 93 *           in the  calling (sub) program. When  SIDE = 'L' or 'l'  then
 94 *           LDA must be at least  max( 1, m ), otherwise  LDA must be at
 95 *           least max( 1, n ).
 96 *           Unchanged on exit.
 97 *
 98 *  B      - COMPLEX*16       array of DIMENSION ( LDB, n ).
 99 *           Before entry, the leading  m by n part of the array  B  must
100 *           contain the matrix B.
101 *           Unchanged on exit.
102 *
103 *  LDB    - INTEGER.
104 *           On entry, LDB specifies the first dimension of B as declared
105 *           in  the  calling  (sub)  program.   LDB  must  be  at  least
106 *           max( 1, m ).
107 *           Unchanged on exit.
108 *
109 *  BETA   - COMPLEX*16      .
110 *           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
111 *           supplied as zero then C need not be set on input.
112 *           Unchanged on exit.
113 *
114 *  C      - COMPLEX*16       array of DIMENSION ( LDC, n ).
115 *           Before entry, the leading  m by n  part of the array  C must
116 *           contain the matrix  C,  except when  beta  is zero, in which
117 *           case C need not be set on entry.
118 *           On exit, the array  C  is overwritten by the  m by n updated
119 *           matrix.
120 *
121 *  LDC    - INTEGER.
122 *           On entry, LDC specifies the first dimension of C as declared
123 *           in  the  calling  (sub)  program.   LDC  must  be  at  least
124 *           max( 1, m ).
125 *           Unchanged on exit.
126 *
127 *  Further Details
128 *  ===============
129 *
130 *  Level 3 Blas routine.
131 *
132 *  -- Written on 8-February-1989.
133 *     Jack Dongarra, Argonne National Laboratory.
134 *     Iain Duff, AERE Harwell.
135 *     Jeremy Du Croz, Numerical Algorithms Group Ltd.
136 *     Sven Hammarling, Numerical Algorithms Group Ltd.
137 *
138 *  =====================================================================
139 *
140 *     .. External Functions ..
141       LOGICAL LSAME
142       EXTERNAL LSAME
143 *     ..
144 *     .. External Subroutines ..
145       EXTERNAL XERBLA
146 *     ..
147 *     .. Intrinsic Functions ..
148       INTRINSIC DBLE,DCONJG,MAX
149 *     ..
150 *     .. Local Scalars ..
151       DOUBLE COMPLEX TEMP1,TEMP2
152       INTEGER I,INFO,J,K,NROWA
153       LOGICAL UPPER
154 *     ..
155 *     .. Parameters ..
156       DOUBLE COMPLEX ONE
157       PARAMETER (ONE= (1.0D+0,0.0D+0))
158       DOUBLE COMPLEX ZERO
159       PARAMETER (ZERO= (0.0D+0,0.0D+0))
160 *     ..
161 *
162 *     Set NROWA as the number of rows of A.
163 *
164       IF (LSAME(SIDE,'L')) THEN
165           NROWA = M
166       ELSE
167           NROWA = N
168       END IF
169       UPPER = LSAME(UPLO,'U')
170 *
171 *     Test the input parameters.
172 *
173       INFO = 0
174       IF ((.NOT.LSAME(SIDE,'L')) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
175           INFO = 1
176       ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
177           INFO = 2
178       ELSE IF (M.LT.0THEN
179           INFO = 3
180       ELSE IF (N.LT.0THEN
181           INFO = 4
182       ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
183           INFO = 7
184       ELSE IF (LDB.LT.MAX(1,M)) THEN
185           INFO = 9
186       ELSE IF (LDC.LT.MAX(1,M)) THEN
187           INFO = 12
188       END IF
189       IF (INFO.NE.0THEN
190           CALL XERBLA('ZHEMM ',INFO)
191           RETURN
192       END IF
193 *
194 *     Quick return if possible.
195 *
196       IF ((M.EQ.0.OR. (N.EQ.0.OR.
197      +    ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
198 *
199 *     And when  alpha.eq.zero.
200 *
201       IF (ALPHA.EQ.ZERO) THEN
202           IF (BETA.EQ.ZERO) THEN
203               DO 20 J = 1,N
204                   DO 10 I = 1,M
205                       C(I,J) = ZERO
206    10             CONTINUE
207    20         CONTINUE
208           ELSE
209               DO 40 J = 1,N
210                   DO 30 I = 1,M
211                       C(I,J) = BETA*C(I,J)
212    30             CONTINUE
213    40         CONTINUE
214           END IF
215           RETURN
216       END IF
217 *
218 *     Start the operations.
219 *
220       IF (LSAME(SIDE,'L')) THEN
221 *
222 *        Form  C := alpha*A*B + beta*C.
223 *
224           IF (UPPER) THEN
225               DO 70 J = 1,N
226                   DO 60 I = 1,M
227                       TEMP1 = ALPHA*B(I,J)
228                       TEMP2 = ZERO
229                       DO 50 K = 1,I - 1
230                           C(K,J) = C(K,J) + TEMP1*A(K,I)
231                           TEMP2 = TEMP2 + B(K,J)*DCONJG(A(K,I))
232    50                 CONTINUE
233                       IF (BETA.EQ.ZERO) THEN
234                           C(I,J) = TEMP1*DBLE(A(I,I)) + ALPHA*TEMP2
235                       ELSE
236                           C(I,J) = BETA*C(I,J) + TEMP1*DBLE(A(I,I)) +
237      +                             ALPHA*TEMP2
238                       END IF
239    60             CONTINUE
240    70         CONTINUE
241           ELSE
242               DO 100 J = 1,N
243                   DO 90 I = M,1,-1
244                       TEMP1 = ALPHA*B(I,J)
245                       TEMP2 = ZERO
246                       DO 80 K = I + 1,M
247                           C(K,J) = C(K,J) + TEMP1*A(K,I)
248                           TEMP2 = TEMP2 + B(K,J)*DCONJG(A(K,I))
249    80                 CONTINUE
250                       IF (BETA.EQ.ZERO) THEN
251                           C(I,J) = TEMP1*DBLE(A(I,I)) + ALPHA*TEMP2
252                       ELSE
253                           C(I,J) = BETA*C(I,J) + TEMP1*DBLE(A(I,I)) +
254      +                             ALPHA*TEMP2
255                       END IF
256    90             CONTINUE
257   100         CONTINUE
258           END IF
259       ELSE
260 *
261 *        Form  C := alpha*B*A + beta*C.
262 *
263           DO 170 J = 1,N
264               TEMP1 = ALPHA*DBLE(A(J,J))
265               IF (BETA.EQ.ZERO) THEN
266                   DO 110 I = 1,M
267                       C(I,J) = TEMP1*B(I,J)
268   110             CONTINUE
269               ELSE
270                   DO 120 I = 1,M
271                       C(I,J) = BETA*C(I,J) + TEMP1*B(I,J)
272   120             CONTINUE
273               END IF
274               DO 140 K = 1,J - 1
275                   IF (UPPER) THEN
276                       TEMP1 = ALPHA*A(K,J)
277                   ELSE
278                       TEMP1 = ALPHA*DCONJG(A(J,K))
279                   END IF
280                   DO 130 I = 1,M
281                       C(I,J) = C(I,J) + TEMP1*B(I,K)
282   130             CONTINUE
283   140         CONTINUE
284               DO 160 K = J + 1,N
285                   IF (UPPER) THEN
286                       TEMP1 = ALPHA*DCONJG(A(J,K))
287                   ELSE
288                       TEMP1 = ALPHA*A(K,J)
289                   END IF
290                   DO 150 I = 1,M
291                       C(I,J) = C(I,J) + TEMP1*B(I,K)
292   150             CONTINUE
293   160         CONTINUE
294   170     CONTINUE
295       END IF
296 *
297       RETURN
298 *
299 *     End of ZHEMM .
300 *
301       END