1       SUBROUTINE ZHEMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
  2 *     .. Scalar Arguments ..
  3       DOUBLE COMPLEX ALPHA,BETA
  4       INTEGER INCX,INCY,LDA,N
  5       CHARACTER UPLO
  6 *     ..
  7 *     .. Array Arguments ..
  8       DOUBLE COMPLEX A(LDA,*),X(*),Y(*)
  9 *     ..
 10 *
 11 *  Purpose
 12 *  =======
 13 *
 14 *  ZHEMV  performs the matrix-vector  operation
 15 *
 16 *     y := alpha*A*x + beta*y,
 17 *
 18 *  where alpha and beta are scalars, x and y are n element vectors and
 19 *  A is an n by n hermitian matrix.
 20 *
 21 *  Arguments
 22 *  ==========
 23 *
 24 *  UPLO   - CHARACTER*1.
 25 *           On entry, UPLO specifies whether the upper or lower
 26 *           triangular part of the array A is to be referenced as
 27 *           follows:
 28 *
 29 *              UPLO = 'U' or 'u'   Only the upper triangular part of A
 30 *                                  is to be referenced.
 31 *
 32 *              UPLO = 'L' or 'l'   Only the lower triangular part of A
 33 *                                  is to be referenced.
 34 *
 35 *           Unchanged on exit.
 36 *
 37 *  N      - INTEGER.
 38 *           On entry, N specifies the order of the matrix A.
 39 *           N must be at least zero.
 40 *           Unchanged on exit.
 41 *
 42 *  ALPHA  - COMPLEX*16      .
 43 *           On entry, ALPHA specifies the scalar alpha.
 44 *           Unchanged on exit.
 45 *
 46 *  A      - COMPLEX*16       array of DIMENSION ( LDA, n ).
 47 *           Before entry with  UPLO = 'U' or 'u', the leading n by n
 48 *           upper triangular part of the array A must contain the upper
 49 *           triangular part of the hermitian matrix and the strictly
 50 *           lower triangular part of A is not referenced.
 51 *           Before entry with UPLO = 'L' or 'l', the leading n by n
 52 *           lower triangular part of the array A must contain the lower
 53 *           triangular part of the hermitian matrix and the strictly
 54 *           upper triangular part of A is not referenced.
 55 *           Note that the imaginary parts of the diagonal elements need
 56 *           not be set and are assumed to be zero.
 57 *           Unchanged on exit.
 58 *
 59 *  LDA    - INTEGER.
 60 *           On entry, LDA specifies the first dimension of A as declared
 61 *           in the calling (sub) program. LDA must be at least
 62 *           max( 1, n ).
 63 *           Unchanged on exit.
 64 *
 65 *  X      - COMPLEX*16       array of dimension at least
 66 *           ( 1 + ( n - 1 )*abs( INCX ) ).
 67 *           Before entry, the incremented array X must contain the n
 68 *           element vector x.
 69 *           Unchanged on exit.
 70 *
 71 *  INCX   - INTEGER.
 72 *           On entry, INCX specifies the increment for the elements of
 73 *           X. INCX must not be zero.
 74 *           Unchanged on exit.
 75 *
 76 *  BETA   - COMPLEX*16      .
 77 *           On entry, BETA specifies the scalar beta. When BETA is
 78 *           supplied as zero then Y need not be set on input.
 79 *           Unchanged on exit.
 80 *
 81 *  Y      - COMPLEX*16       array of dimension at least
 82 *           ( 1 + ( n - 1 )*abs( INCY ) ).
 83 *           Before entry, the incremented array Y must contain the n
 84 *           element vector y. On exit, Y is overwritten by the updated
 85 *           vector y.
 86 *
 87 *  INCY   - INTEGER.
 88 *           On entry, INCY specifies the increment for the elements of
 89 *           Y. INCY must not be zero.
 90 *           Unchanged on exit.
 91 *
 92 *  Further Details
 93 *  ===============
 94 *
 95 *  Level 2 Blas routine.
 96 *  The vector and matrix arguments are not referenced when N = 0, or M = 0
 97 *
 98 *  -- Written on 22-October-1986.
 99 *     Jack Dongarra, Argonne National Lab.
100 *     Jeremy Du Croz, Nag Central Office.
101 *     Sven Hammarling, Nag Central Office.
102 *     Richard Hanson, Sandia National Labs.
103 *
104 *  =====================================================================
105 *
106 *     .. Parameters ..
107       DOUBLE COMPLEX ONE
108       PARAMETER (ONE= (1.0D+0,0.0D+0))
109       DOUBLE COMPLEX ZERO
110       PARAMETER (ZERO= (0.0D+0,0.0D+0))
111 *     ..
112 *     .. Local Scalars ..
113       DOUBLE COMPLEX TEMP1,TEMP2
114       INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY
115 *     ..
116 *     .. External Functions ..
117       LOGICAL LSAME
118       EXTERNAL LSAME
119 *     ..
120 *     .. External Subroutines ..
121       EXTERNAL XERBLA
122 *     ..
123 *     .. Intrinsic Functions ..
124       INTRINSIC DBLE,DCONJG,MAX
125 *     ..
126 *
127 *     Test the input parameters.
128 *
129       INFO = 0
130       IF (.NOT.LSAME(UPLO,'U'.AND. .NOT.LSAME(UPLO,'L')) THEN
131           INFO = 1
132       ELSE IF (N.LT.0THEN
133           INFO = 2
134       ELSE IF (LDA.LT.MAX(1,N)) THEN
135           INFO = 5
136       ELSE IF (INCX.EQ.0THEN
137           INFO = 7
138       ELSE IF (INCY.EQ.0THEN
139           INFO = 10
140       END IF
141       IF (INFO.NE.0THEN
142           CALL XERBLA('ZHEMV ',INFO)
143           RETURN
144       END IF
145 *
146 *     Quick return if possible.
147 *
148       IF ((N.EQ.0.OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
149 *
150 *     Set up the start points in  X  and  Y.
151 *
152       IF (INCX.GT.0THEN
153           KX = 1
154       ELSE
155           KX = 1 - (N-1)*INCX
156       END IF
157       IF (INCY.GT.0THEN
158           KY = 1
159       ELSE
160           KY = 1 - (N-1)*INCY
161       END IF
162 *
163 *     Start the operations. In this version the elements of A are
164 *     accessed sequentially with one pass through the triangular part
165 *     of A.
166 *
167 *     First form  y := beta*y.
168 *
169       IF (BETA.NE.ONE) THEN
170           IF (INCY.EQ.1THEN
171               IF (BETA.EQ.ZERO) THEN
172                   DO 10 I = 1,N
173                       Y(I) = ZERO
174    10             CONTINUE
175               ELSE
176                   DO 20 I = 1,N
177                       Y(I) = BETA*Y(I)
178    20             CONTINUE
179               END IF
180           ELSE
181               IY = KY
182               IF (BETA.EQ.ZERO) THEN
183                   DO 30 I = 1,N
184                       Y(IY) = ZERO
185                       IY = IY + INCY
186    30             CONTINUE
187               ELSE
188                   DO 40 I = 1,N
189                       Y(IY) = BETA*Y(IY)
190                       IY = IY + INCY
191    40             CONTINUE
192               END IF
193           END IF
194       END IF
195       IF (ALPHA.EQ.ZERO) RETURN
196       IF (LSAME(UPLO,'U')) THEN
197 *
198 *        Form  y  when A is stored in upper triangle.
199 *
200           IF ((INCX.EQ.1.AND. (INCY.EQ.1)) THEN
201               DO 60 J = 1,N
202                   TEMP1 = ALPHA*X(J)
203                   TEMP2 = ZERO
204                   DO 50 I = 1,J - 1
205                       Y(I) = Y(I) + TEMP1*A(I,J)
206                       TEMP2 = TEMP2 + DCONJG(A(I,J))*X(I)
207    50             CONTINUE
208                   Y(J) = Y(J) + TEMP1*DBLE(A(J,J)) + ALPHA*TEMP2
209    60         CONTINUE
210           ELSE
211               JX = KX
212               JY = KY
213               DO 80 J = 1,N
214                   TEMP1 = ALPHA*X(JX)
215                   TEMP2 = ZERO
216                   IX = KX
217                   IY = KY
218                   DO 70 I = 1,J - 1
219                       Y(IY) = Y(IY) + TEMP1*A(I,J)
220                       TEMP2 = TEMP2 + DCONJG(A(I,J))*X(IX)
221                       IX = IX + INCX
222                       IY = IY + INCY
223    70             CONTINUE
224                   Y(JY) = Y(JY) + TEMP1*DBLE(A(J,J)) + ALPHA*TEMP2
225                   JX = JX + INCX
226                   JY = JY + INCY
227    80         CONTINUE
228           END IF
229       ELSE
230 *
231 *        Form  y  when A is stored in lower triangle.
232 *
233           IF ((INCX.EQ.1.AND. (INCY.EQ.1)) THEN
234               DO 100 J = 1,N
235                   TEMP1 = ALPHA*X(J)
236                   TEMP2 = ZERO
237                   Y(J) = Y(J) + TEMP1*DBLE(A(J,J))
238                   DO 90 I = J + 1,N
239                       Y(I) = Y(I) + TEMP1*A(I,J)
240                       TEMP2 = TEMP2 + DCONJG(A(I,J))*X(I)
241    90             CONTINUE
242                   Y(J) = Y(J) + ALPHA*TEMP2
243   100         CONTINUE
244           ELSE
245               JX = KX
246               JY = KY
247               DO 120 J = 1,N
248                   TEMP1 = ALPHA*X(JX)
249                   TEMP2 = ZERO
250                   Y(JY) = Y(JY) + TEMP1*DBLE(A(J,J))
251                   IX = JX
252                   IY = JY
253                   DO 110 I = J + 1,N
254                       IX = IX + INCX
255                       IY = IY + INCY
256                       Y(IY) = Y(IY) + TEMP1*A(I,J)
257                       TEMP2 = TEMP2 + DCONJG(A(I,J))*X(IX)
258   110             CONTINUE
259                   Y(JY) = Y(JY) + ALPHA*TEMP2
260                   JX = JX + INCX
261                   JY = JY + INCY
262   120         CONTINUE
263           END IF
264       END IF
265 *
266       RETURN
267 *
268 *     End of ZHEMV .
269 *
270       END