1       SUBROUTINE ZHER(UPLO,N,ALPHA,X,INCX,A,LDA)
  2 *     .. Scalar Arguments ..
  3       DOUBLE PRECISION ALPHA
  4       INTEGER INCX,LDA,N
  5       CHARACTER UPLO
  6 *     ..
  7 *     .. Array Arguments ..
  8       DOUBLE COMPLEX A(LDA,*),X(*)
  9 *     ..
 10 *
 11 *  Purpose
 12 *  =======
 13 *
 14 *  ZHER   performs the hermitian rank 1 operation
 15 *
 16 *     A := alpha*x*x**H + A,
 17 *
 18 *  where alpha is a real scalar, x is an n element vector and A is an
 19 *  n by n hermitian matrix.
 20 *
 21 *  Arguments
 22 *  ==========
 23 *
 24 *  UPLO   - CHARACTER*1.
 25 *           On entry, UPLO specifies whether the upper or lower
 26 *           triangular part of the array A is to be referenced as
 27 *           follows:
 28 *
 29 *              UPLO = 'U' or 'u'   Only the upper triangular part of A
 30 *                                  is to be referenced.
 31 *
 32 *              UPLO = 'L' or 'l'   Only the lower triangular part of A
 33 *                                  is to be referenced.
 34 *
 35 *           Unchanged on exit.
 36 *
 37 *  N      - INTEGER.
 38 *           On entry, N specifies the order of the matrix A.
 39 *           N must be at least zero.
 40 *           Unchanged on exit.
 41 *
 42 *  ALPHA  - DOUBLE PRECISION.
 43 *           On entry, ALPHA specifies the scalar alpha.
 44 *           Unchanged on exit.
 45 *
 46 *  X      - COMPLEX*16       array of dimension at least
 47 *           ( 1 + ( n - 1 )*abs( INCX ) ).
 48 *           Before entry, the incremented array X must contain the n
 49 *           element vector x.
 50 *           Unchanged on exit.
 51 *
 52 *  INCX   - INTEGER.
 53 *           On entry, INCX specifies the increment for the elements of
 54 *           X. INCX must not be zero.
 55 *           Unchanged on exit.
 56 *
 57 *  A      - COMPLEX*16       array of DIMENSION ( LDA, n ).
 58 *           Before entry with  UPLO = 'U' or 'u', the leading n by n
 59 *           upper triangular part of the array A must contain the upper
 60 *           triangular part of the hermitian matrix and the strictly
 61 *           lower triangular part of A is not referenced. On exit, the
 62 *           upper triangular part of the array A is overwritten by the
 63 *           upper triangular part of the updated matrix.
 64 *           Before entry with UPLO = 'L' or 'l', the leading n by n
 65 *           lower triangular part of the array A must contain the lower
 66 *           triangular part of the hermitian matrix and the strictly
 67 *           upper triangular part of A is not referenced. On exit, the
 68 *           lower triangular part of the array A is overwritten by the
 69 *           lower triangular part of the updated matrix.
 70 *           Note that the imaginary parts of the diagonal elements need
 71 *           not be set, they are assumed to be zero, and on exit they
 72 *           are set to zero.
 73 *
 74 *  LDA    - INTEGER.
 75 *           On entry, LDA specifies the first dimension of A as declared
 76 *           in the calling (sub) program. LDA must be at least
 77 *           max( 1, n ).
 78 *           Unchanged on exit.
 79 *
 80 *  Further Details
 81 *  ===============
 82 *
 83 *  Level 2 Blas routine.
 84 *
 85 *  -- Written on 22-October-1986.
 86 *     Jack Dongarra, Argonne National Lab.
 87 *     Jeremy Du Croz, Nag Central Office.
 88 *     Sven Hammarling, Nag Central Office.
 89 *     Richard Hanson, Sandia National Labs.
 90 *
 91 *  =====================================================================
 92 *
 93 *     .. Parameters ..
 94       DOUBLE COMPLEX ZERO
 95       PARAMETER (ZERO= (0.0D+0,0.0D+0))
 96 *     ..
 97 *     .. Local Scalars ..
 98       DOUBLE COMPLEX TEMP
 99       INTEGER I,INFO,IX,J,JX,KX
100 *     ..
101 *     .. External Functions ..
102       LOGICAL LSAME
103       EXTERNAL LSAME
104 *     ..
105 *     .. External Subroutines ..
106       EXTERNAL XERBLA
107 *     ..
108 *     .. Intrinsic Functions ..
109       INTRINSIC DBLE,DCONJG,MAX
110 *     ..
111 *
112 *     Test the input parameters.
113 *
114       INFO = 0
115       IF (.NOT.LSAME(UPLO,'U'.AND. .NOT.LSAME(UPLO,'L')) THEN
116           INFO = 1
117       ELSE IF (N.LT.0THEN
118           INFO = 2
119       ELSE IF (INCX.EQ.0THEN
120           INFO = 5
121       ELSE IF (LDA.LT.MAX(1,N)) THEN
122           INFO = 7
123       END IF
124       IF (INFO.NE.0THEN
125           CALL XERBLA('ZHER  ',INFO)
126           RETURN
127       END IF
128 *
129 *     Quick return if possible.
130 *
131       IF ((N.EQ.0.OR. (ALPHA.EQ.DBLE(ZERO))) RETURN
132 *
133 *     Set the start point in X if the increment is not unity.
134 *
135       IF (INCX.LE.0THEN
136           KX = 1 - (N-1)*INCX
137       ELSE IF (INCX.NE.1THEN
138           KX = 1
139       END IF
140 *
141 *     Start the operations. In this version the elements of A are
142 *     accessed sequentially with one pass through the triangular part
143 *     of A.
144 *
145       IF (LSAME(UPLO,'U')) THEN
146 *
147 *        Form  A  when A is stored in upper triangle.
148 *
149           IF (INCX.EQ.1THEN
150               DO 20 J = 1,N
151                   IF (X(J).NE.ZERO) THEN
152                       TEMP = ALPHA*DCONJG(X(J))
153                       DO 10 I = 1,J - 1
154                           A(I,J) = A(I,J) + X(I)*TEMP
155    10                 CONTINUE
156                       A(J,J) = DBLE(A(J,J)) + DBLE(X(J)*TEMP)
157                   ELSE
158                       A(J,J) = DBLE(A(J,J))
159                   END IF
160    20         CONTINUE
161           ELSE
162               JX = KX
163               DO 40 J = 1,N
164                   IF (X(JX).NE.ZERO) THEN
165                       TEMP = ALPHA*DCONJG(X(JX))
166                       IX = KX
167                       DO 30 I = 1,J - 1
168                           A(I,J) = A(I,J) + X(IX)*TEMP
169                           IX = IX + INCX
170    30                 CONTINUE
171                       A(J,J) = DBLE(A(J,J)) + DBLE(X(JX)*TEMP)
172                   ELSE
173                       A(J,J) = DBLE(A(J,J))
174                   END IF
175                   JX = JX + INCX
176    40         CONTINUE
177           END IF
178       ELSE
179 *
180 *        Form  A  when A is stored in lower triangle.
181 *
182           IF (INCX.EQ.1THEN
183               DO 60 J = 1,N
184                   IF (X(J).NE.ZERO) THEN
185                       TEMP = ALPHA*DCONJG(X(J))
186                       A(J,J) = DBLE(A(J,J)) + DBLE(TEMP*X(J))
187                       DO 50 I = J + 1,N
188                           A(I,J) = A(I,J) + X(I)*TEMP
189    50                 CONTINUE
190                   ELSE
191                       A(J,J) = DBLE(A(J,J))
192                   END IF
193    60         CONTINUE
194           ELSE
195               JX = KX
196               DO 80 J = 1,N
197                   IF (X(JX).NE.ZERO) THEN
198                       TEMP = ALPHA*DCONJG(X(JX))
199                       A(J,J) = DBLE(A(J,J)) + DBLE(TEMP*X(JX))
200                       IX = JX
201                       DO 70 I = J + 1,N
202                           IX = IX + INCX
203                           A(I,J) = A(I,J) + X(IX)*TEMP
204    70                 CONTINUE
205                   ELSE
206                       A(J,J) = DBLE(A(J,J))
207                   END IF
208                   JX = JX + INCX
209    80         CONTINUE
210           END IF
211       END IF
212 *
213       RETURN
214 *
215 *     End of ZHER  .
216 *
217       END