1       SUBROUTINE ZHER2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
  2 *     .. Scalar Arguments ..
  3       DOUBLE COMPLEX ALPHA
  4       INTEGER INCX,INCY,LDA,N
  5       CHARACTER UPLO
  6 *     ..
  7 *     .. Array Arguments ..
  8       DOUBLE COMPLEX A(LDA,*),X(*),Y(*)
  9 *     ..
 10 *
 11 *  Purpose
 12 *  =======
 13 *
 14 *  ZHER2  performs the hermitian rank 2 operation
 15 *
 16 *     A := alpha*x*y**H + conjg( alpha )*y*x**H + A,
 17 *
 18 *  where alpha is a scalar, x and y are n element vectors and A is an n
 19 *  by n hermitian matrix.
 20 *
 21 *  Arguments
 22 *  ==========
 23 *
 24 *  UPLO   - CHARACTER*1.
 25 *           On entry, UPLO specifies whether the upper or lower
 26 *           triangular part of the array A is to be referenced as
 27 *           follows:
 28 *
 29 *              UPLO = 'U' or 'u'   Only the upper triangular part of A
 30 *                                  is to be referenced.
 31 *
 32 *              UPLO = 'L' or 'l'   Only the lower triangular part of A
 33 *                                  is to be referenced.
 34 *
 35 *           Unchanged on exit.
 36 *
 37 *  N      - INTEGER.
 38 *           On entry, N specifies the order of the matrix A.
 39 *           N must be at least zero.
 40 *           Unchanged on exit.
 41 *
 42 *  ALPHA  - COMPLEX*16      .
 43 *           On entry, ALPHA specifies the scalar alpha.
 44 *           Unchanged on exit.
 45 *
 46 *  X      - COMPLEX*16       array of dimension at least
 47 *           ( 1 + ( n - 1 )*abs( INCX ) ).
 48 *           Before entry, the incremented array X must contain the n
 49 *           element vector x.
 50 *           Unchanged on exit.
 51 *
 52 *  INCX   - INTEGER.
 53 *           On entry, INCX specifies the increment for the elements of
 54 *           X. INCX must not be zero.
 55 *           Unchanged on exit.
 56 *
 57 *  Y      - COMPLEX*16       array of dimension at least
 58 *           ( 1 + ( n - 1 )*abs( INCY ) ).
 59 *           Before entry, the incremented array Y must contain the n
 60 *           element vector y.
 61 *           Unchanged on exit.
 62 *
 63 *  INCY   - INTEGER.
 64 *           On entry, INCY specifies the increment for the elements of
 65 *           Y. INCY must not be zero.
 66 *           Unchanged on exit.
 67 *
 68 *  A      - COMPLEX*16       array of DIMENSION ( LDA, n ).
 69 *           Before entry with  UPLO = 'U' or 'u', the leading n by n
 70 *           upper triangular part of the array A must contain the upper
 71 *           triangular part of the hermitian matrix and the strictly
 72 *           lower triangular part of A is not referenced. On exit, the
 73 *           upper triangular part of the array A is overwritten by the
 74 *           upper triangular part of the updated matrix.
 75 *           Before entry with UPLO = 'L' or 'l', the leading n by n
 76 *           lower triangular part of the array A must contain the lower
 77 *           triangular part of the hermitian matrix and the strictly
 78 *           upper triangular part of A is not referenced. On exit, the
 79 *           lower triangular part of the array A is overwritten by the
 80 *           lower triangular part of the updated matrix.
 81 *           Note that the imaginary parts of the diagonal elements need
 82 *           not be set, they are assumed to be zero, and on exit they
 83 *           are set to zero.
 84 *
 85 *  LDA    - INTEGER.
 86 *           On entry, LDA specifies the first dimension of A as declared
 87 *           in the calling (sub) program. LDA must be at least
 88 *           max( 1, n ).
 89 *           Unchanged on exit.
 90 *
 91 *  Further Details
 92 *  ===============
 93 *
 94 *  Level 2 Blas routine.
 95 *
 96 *  -- Written on 22-October-1986.
 97 *     Jack Dongarra, Argonne National Lab.
 98 *     Jeremy Du Croz, Nag Central Office.
 99 *     Sven Hammarling, Nag Central Office.
100 *     Richard Hanson, Sandia National Labs.
101 *
102 *  =====================================================================
103 *
104 *     .. Parameters ..
105       DOUBLE COMPLEX ZERO
106       PARAMETER (ZERO= (0.0D+0,0.0D+0))
107 *     ..
108 *     .. Local Scalars ..
109       DOUBLE COMPLEX TEMP1,TEMP2
110       INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY
111 *     ..
112 *     .. External Functions ..
113       LOGICAL LSAME
114       EXTERNAL LSAME
115 *     ..
116 *     .. External Subroutines ..
117       EXTERNAL XERBLA
118 *     ..
119 *     .. Intrinsic Functions ..
120       INTRINSIC DBLE,DCONJG,MAX
121 *     ..
122 *
123 *     Test the input parameters.
124 *
125       INFO = 0
126       IF (.NOT.LSAME(UPLO,'U'.AND. .NOT.LSAME(UPLO,'L')) THEN
127           INFO = 1
128       ELSE IF (N.LT.0THEN
129           INFO = 2
130       ELSE IF (INCX.EQ.0THEN
131           INFO = 5
132       ELSE IF (INCY.EQ.0THEN
133           INFO = 7
134       ELSE IF (LDA.LT.MAX(1,N)) THEN
135           INFO = 9
136       END IF
137       IF (INFO.NE.0THEN
138           CALL XERBLA('ZHER2 ',INFO)
139           RETURN
140       END IF
141 *
142 *     Quick return if possible.
143 *
144       IF ((N.EQ.0.OR. (ALPHA.EQ.ZERO)) RETURN
145 *
146 *     Set up the start points in X and Y if the increments are not both
147 *     unity.
148 *
149       IF ((INCX.NE.1.OR. (INCY.NE.1)) THEN
150           IF (INCX.GT.0THEN
151               KX = 1
152           ELSE
153               KX = 1 - (N-1)*INCX
154           END IF
155           IF (INCY.GT.0THEN
156               KY = 1
157           ELSE
158               KY = 1 - (N-1)*INCY
159           END IF
160           JX = KX
161           JY = KY
162       END IF
163 *
164 *     Start the operations. In this version the elements of A are
165 *     accessed sequentially with one pass through the triangular part
166 *     of A.
167 *
168       IF (LSAME(UPLO,'U')) THEN
169 *
170 *        Form  A  when A is stored in the upper triangle.
171 *
172           IF ((INCX.EQ.1.AND. (INCY.EQ.1)) THEN
173               DO 20 J = 1,N
174                   IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
175                       TEMP1 = ALPHA*DCONJG(Y(J))
176                       TEMP2 = DCONJG(ALPHA*X(J))
177                       DO 10 I = 1,J - 1
178                           A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2
179    10                 CONTINUE
180                       A(J,J) = DBLE(A(J,J)) +
181      +                         DBLE(X(J)*TEMP1+Y(J)*TEMP2)
182                   ELSE
183                       A(J,J) = DBLE(A(J,J))
184                   END IF
185    20         CONTINUE
186           ELSE
187               DO 40 J = 1,N
188                   IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
189                       TEMP1 = ALPHA*DCONJG(Y(JY))
190                       TEMP2 = DCONJG(ALPHA*X(JX))
191                       IX = KX
192                       IY = KY
193                       DO 30 I = 1,J - 1
194                           A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2
195                           IX = IX + INCX
196                           IY = IY + INCY
197    30                 CONTINUE
198                       A(J,J) = DBLE(A(J,J)) +
199      +                         DBLE(X(JX)*TEMP1+Y(JY)*TEMP2)
200                   ELSE
201                       A(J,J) = DBLE(A(J,J))
202                   END IF
203                   JX = JX + INCX
204                   JY = JY + INCY
205    40         CONTINUE
206           END IF
207       ELSE
208 *
209 *        Form  A  when A is stored in the lower triangle.
210 *
211           IF ((INCX.EQ.1.AND. (INCY.EQ.1)) THEN
212               DO 60 J = 1,N
213                   IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
214                       TEMP1 = ALPHA*DCONJG(Y(J))
215                       TEMP2 = DCONJG(ALPHA*X(J))
216                       A(J,J) = DBLE(A(J,J)) +
217      +                         DBLE(X(J)*TEMP1+Y(J)*TEMP2)
218                       DO 50 I = J + 1,N
219                           A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2
220    50                 CONTINUE
221                   ELSE
222                       A(J,J) = DBLE(A(J,J))
223                   END IF
224    60         CONTINUE
225           ELSE
226               DO 80 J = 1,N
227                   IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
228                       TEMP1 = ALPHA*DCONJG(Y(JY))
229                       TEMP2 = DCONJG(ALPHA*X(JX))
230                       A(J,J) = DBLE(A(J,J)) +
231      +                         DBLE(X(JX)*TEMP1+Y(JY)*TEMP2)
232                       IX = JX
233                       IY = JY
234                       DO 70 I = J + 1,N
235                           IX = IX + INCX
236                           IY = IY + INCY
237                           A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2
238    70                 CONTINUE
239                   ELSE
240                       A(J,J) = DBLE(A(J,J))
241                   END IF
242                   JX = JX + INCX
243                   JY = JY + INCY
244    80         CONTINUE
245           END IF
246       END IF
247 *
248       RETURN
249 *
250 *     End of ZHER2 .
251 *
252       END