1       SUBROUTINE ZHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
  2 *     .. Scalar Arguments ..
  3       DOUBLE COMPLEX ALPHA
  4       INTEGER INCX,INCY,N
  5       CHARACTER UPLO
  6 *     ..
  7 *     .. Array Arguments ..
  8       DOUBLE COMPLEX AP(*),X(*),Y(*)
  9 *     ..
 10 *
 11 *  Purpose
 12 *  =======
 13 *
 14 *  ZHPR2  performs the hermitian rank 2 operation
 15 *
 16 *     A := alpha*x*y**H + conjg( alpha )*y*x**H + A,
 17 *
 18 *  where alpha is a scalar, x and y are n element vectors and A is an
 19 *  n by n hermitian matrix, supplied in packed form.
 20 *
 21 *  Arguments
 22 *  ==========
 23 *
 24 *  UPLO   - CHARACTER*1.
 25 *           On entry, UPLO specifies whether the upper or lower
 26 *           triangular part of the matrix A is supplied in the packed
 27 *           array AP as follows:
 28 *
 29 *              UPLO = 'U' or 'u'   The upper triangular part of A is
 30 *                                  supplied in AP.
 31 *
 32 *              UPLO = 'L' or 'l'   The lower triangular part of A is
 33 *                                  supplied in AP.
 34 *
 35 *           Unchanged on exit.
 36 *
 37 *  N      - INTEGER.
 38 *           On entry, N specifies the order of the matrix A.
 39 *           N must be at least zero.
 40 *           Unchanged on exit.
 41 *
 42 *  ALPHA  - COMPLEX*16      .
 43 *           On entry, ALPHA specifies the scalar alpha.
 44 *           Unchanged on exit.
 45 *
 46 *  X      - COMPLEX*16       array of dimension at least
 47 *           ( 1 + ( n - 1 )*abs( INCX ) ).
 48 *           Before entry, the incremented array X must contain the n
 49 *           element vector x.
 50 *           Unchanged on exit.
 51 *
 52 *  INCX   - INTEGER.
 53 *           On entry, INCX specifies the increment for the elements of
 54 *           X. INCX must not be zero.
 55 *           Unchanged on exit.
 56 *
 57 *  Y      - COMPLEX*16       array of dimension at least
 58 *           ( 1 + ( n - 1 )*abs( INCY ) ).
 59 *           Before entry, the incremented array Y must contain the n
 60 *           element vector y.
 61 *           Unchanged on exit.
 62 *
 63 *  INCY   - INTEGER.
 64 *           On entry, INCY specifies the increment for the elements of
 65 *           Y. INCY must not be zero.
 66 *           Unchanged on exit.
 67 *
 68 *  AP     - COMPLEX*16       array of DIMENSION at least
 69 *           ( ( n*( n + 1 ) )/2 ).
 70 *           Before entry with  UPLO = 'U' or 'u', the array AP must
 71 *           contain the upper triangular part of the hermitian matrix
 72 *           packed sequentially, column by column, so that AP( 1 )
 73 *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
 74 *           and a( 2, 2 ) respectively, and so on. On exit, the array
 75 *           AP is overwritten by the upper triangular part of the
 76 *           updated matrix.
 77 *           Before entry with UPLO = 'L' or 'l', the array AP must
 78 *           contain the lower triangular part of the hermitian matrix
 79 *           packed sequentially, column by column, so that AP( 1 )
 80 *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
 81 *           and a( 3, 1 ) respectively, and so on. On exit, the array
 82 *           AP is overwritten by the lower triangular part of the
 83 *           updated matrix.
 84 *           Note that the imaginary parts of the diagonal elements need
 85 *           not be set, they are assumed to be zero, and on exit they
 86 *           are set to zero.
 87 *
 88 *  Further Details
 89 *  ===============
 90 *
 91 *  Level 2 Blas routine.
 92 *
 93 *  -- Written on 22-October-1986.
 94 *     Jack Dongarra, Argonne National Lab.
 95 *     Jeremy Du Croz, Nag Central Office.
 96 *     Sven Hammarling, Nag Central Office.
 97 *     Richard Hanson, Sandia National Labs.
 98 *
 99 *  =====================================================================
100 *
101 *     .. Parameters ..
102       DOUBLE COMPLEX ZERO
103       PARAMETER (ZERO= (0.0D+0,0.0D+0))
104 *     ..
105 *     .. Local Scalars ..
106       DOUBLE COMPLEX TEMP1,TEMP2
107       INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
108 *     ..
109 *     .. External Functions ..
110       LOGICAL LSAME
111       EXTERNAL LSAME
112 *     ..
113 *     .. External Subroutines ..
114       EXTERNAL XERBLA
115 *     ..
116 *     .. Intrinsic Functions ..
117       INTRINSIC DBLE,DCONJG
118 *     ..
119 *
120 *     Test the input parameters.
121 *
122       INFO = 0
123       IF (.NOT.LSAME(UPLO,'U'.AND. .NOT.LSAME(UPLO,'L')) THEN
124           INFO = 1
125       ELSE IF (N.LT.0THEN
126           INFO = 2
127       ELSE IF (INCX.EQ.0THEN
128           INFO = 5
129       ELSE IF (INCY.EQ.0THEN
130           INFO = 7
131       END IF
132       IF (INFO.NE.0THEN
133           CALL XERBLA('ZHPR2 ',INFO)
134           RETURN
135       END IF
136 *
137 *     Quick return if possible.
138 *
139       IF ((N.EQ.0.OR. (ALPHA.EQ.ZERO)) RETURN
140 *
141 *     Set up the start points in X and Y if the increments are not both
142 *     unity.
143 *
144       IF ((INCX.NE.1.OR. (INCY.NE.1)) THEN
145           IF (INCX.GT.0THEN
146               KX = 1
147           ELSE
148               KX = 1 - (N-1)*INCX
149           END IF
150           IF (INCY.GT.0THEN
151               KY = 1
152           ELSE
153               KY = 1 - (N-1)*INCY
154           END IF
155           JX = KX
156           JY = KY
157       END IF
158 *
159 *     Start the operations. In this version the elements of the array AP
160 *     are accessed sequentially with one pass through AP.
161 *
162       KK = 1
163       IF (LSAME(UPLO,'U')) THEN
164 *
165 *        Form  A  when upper triangle is stored in AP.
166 *
167           IF ((INCX.EQ.1.AND. (INCY.EQ.1)) THEN
168               DO 20 J = 1,N
169                   IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
170                       TEMP1 = ALPHA*DCONJG(Y(J))
171                       TEMP2 = DCONJG(ALPHA*X(J))
172                       K = KK
173                       DO 10 I = 1,J - 1
174                           AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
175                           K = K + 1
176    10                 CONTINUE
177                       AP(KK+J-1= DBLE(AP(KK+J-1)) +
178      +                             DBLE(X(J)*TEMP1+Y(J)*TEMP2)
179                   ELSE
180                       AP(KK+J-1= DBLE(AP(KK+J-1))
181                   END IF
182                   KK = KK + J
183    20         CONTINUE
184           ELSE
185               DO 40 J = 1,N
186                   IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
187                       TEMP1 = ALPHA*DCONJG(Y(JY))
188                       TEMP2 = DCONJG(ALPHA*X(JX))
189                       IX = KX
190                       IY = KY
191                       DO 30 K = KK,KK + J - 2
192                           AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
193                           IX = IX + INCX
194                           IY = IY + INCY
195    30                 CONTINUE
196                       AP(KK+J-1= DBLE(AP(KK+J-1)) +
197      +                             DBLE(X(JX)*TEMP1+Y(JY)*TEMP2)
198                   ELSE
199                       AP(KK+J-1= DBLE(AP(KK+J-1))
200                   END IF
201                   JX = JX + INCX
202                   JY = JY + INCY
203                   KK = KK + J
204    40         CONTINUE
205           END IF
206       ELSE
207 *
208 *        Form  A  when lower triangle is stored in AP.
209 *
210           IF ((INCX.EQ.1.AND. (INCY.EQ.1)) THEN
211               DO 60 J = 1,N
212                   IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
213                       TEMP1 = ALPHA*DCONJG(Y(J))
214                       TEMP2 = DCONJG(ALPHA*X(J))
215                       AP(KK) = DBLE(AP(KK)) +
216      +                         DBLE(X(J)*TEMP1+Y(J)*TEMP2)
217                       K = KK + 1
218                       DO 50 I = J + 1,N
219                           AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
220                           K = K + 1
221    50                 CONTINUE
222                   ELSE
223                       AP(KK) = DBLE(AP(KK))
224                   END IF
225                   KK = KK + N - J + 1
226    60         CONTINUE
227           ELSE
228               DO 80 J = 1,N
229                   IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
230                       TEMP1 = ALPHA*DCONJG(Y(JY))
231                       TEMP2 = DCONJG(ALPHA*X(JX))
232                       AP(KK) = DBLE(AP(KK)) +
233      +                         DBLE(X(JX)*TEMP1+Y(JY)*TEMP2)
234                       IX = JX
235                       IY = JY
236                       DO 70 K = KK + 1,KK + N - J
237                           IX = IX + INCX
238                           IY = IY + INCY
239                           AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
240    70                 CONTINUE
241                   ELSE
242                       AP(KK) = DBLE(AP(KK))
243                   END IF
244                   JX = JX + INCX
245                   JY = JY + INCY
246                   KK = KK + N - J + 1
247    80         CONTINUE
248           END IF
249       END IF
250 *
251       RETURN
252 *
253 *     End of ZHPR2 .
254 *
255       END