1       SUBROUTINE CGETF2( M, N, A, LDA, IPIV, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.2) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       INTEGER            INFO, LDA, M, N
 10 *     ..
 11 *     .. Array Arguments ..
 12       INTEGER            IPIV( * )
 13       COMPLEX            A( LDA, * )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  CGETF2 computes an LU factorization of a general m-by-n matrix A
 20 *  using partial pivoting with row interchanges.
 21 *
 22 *  The factorization has the form
 23 *     A = P * L * U
 24 *  where P is a permutation matrix, L is lower triangular with unit
 25 *  diagonal elements (lower trapezoidal if m > n), and U is upper
 26 *  triangular (upper trapezoidal if m < n).
 27 *
 28 *  This is the right-looking Level 2 BLAS version of the algorithm.
 29 *
 30 *  Arguments
 31 *  =========
 32 *
 33 *  M       (input) INTEGER
 34 *          The number of rows of the matrix A.  M >= 0.
 35 *
 36 *  N       (input) INTEGER
 37 *          The number of columns of the matrix A.  N >= 0.
 38 *
 39 *  A       (input/output) COMPLEX array, dimension (LDA,N)
 40 *          On entry, the m by n matrix to be factored.
 41 *          On exit, the factors L and U from the factorization
 42 *          A = P*L*U; the unit diagonal elements of L are not stored.
 43 *
 44 *  LDA     (input) INTEGER
 45 *          The leading dimension of the array A.  LDA >= max(1,M).
 46 *
 47 *  IPIV    (output) INTEGER array, dimension (min(M,N))
 48 *          The pivot indices; for 1 <= i <= min(M,N), row i of the
 49 *          matrix was interchanged with row IPIV(i).
 50 *
 51 *  INFO    (output) INTEGER
 52 *          = 0: successful exit
 53 *          < 0: if INFO = -k, the k-th argument had an illegal value
 54 *          > 0: if INFO = k, U(k,k) is exactly zero. The factorization
 55 *               has been completed, but the factor U is exactly
 56 *               singular, and division by zero will occur if it is used
 57 *               to solve a system of equations.
 58 *
 59 *  =====================================================================
 60 *
 61 *     .. Parameters ..
 62       COMPLEX            ONE, ZERO
 63       PARAMETER          ( ONE = ( 1.0E+00.0E+0 ),
 64      $                   ZERO = ( 0.0E+00.0E+0 ) )
 65 *     ..
 66 *     .. Local Scalars ..
 67       REAL               SFMIN
 68       INTEGER            I, J, JP
 69 *     ..
 70 *     .. External Functions ..
 71       REAL               SLAMCH
 72       INTEGER            ICAMAX
 73       EXTERNAL           SLAMCH, ICAMAX
 74 *     ..
 75 *     .. External Subroutines ..
 76       EXTERNAL           CGERU, CSCAL, CSWAP, XERBLA
 77 *     ..
 78 *     .. Intrinsic Functions ..
 79       INTRINSIC          MAXMIN
 80 *     ..
 81 *     .. Executable Statements ..
 82 *
 83 *     Test the input parameters.
 84 *
 85       INFO = 0
 86       IF( M.LT.0 ) THEN
 87          INFO = -1
 88       ELSE IF( N.LT.0 ) THEN
 89          INFO = -2
 90       ELSE IF( LDA.LT.MAX1, M ) ) THEN
 91          INFO = -4
 92       END IF
 93       IF( INFO.NE.0 ) THEN
 94          CALL XERBLA( 'CGETF2'-INFO )
 95          RETURN
 96       END IF
 97 *
 98 *     Quick return if possible
 99 *
100       IF( M.EQ.0 .OR. N.EQ.0 )
101      $   RETURN
102 *
103 *     Compute machine safe minimum
104 *
105       SFMIN = SLAMCH('S'
106 *
107       DO 10 J = 1MIN( M, N )
108 *
109 *        Find pivot and test for singularity.
110 *
111          JP = J - 1 + ICAMAX( M-J+1, A( J, J ), 1 )
112          IPIV( J ) = JP
113          IF( A( JP, J ).NE.ZERO ) THEN
114 *
115 *           Apply the interchange to columns 1:N.
116 *
117             IF( JP.NE.J )
118      $         CALL CSWAP( N, A( J, 1 ), LDA, A( JP, 1 ), LDA )
119 *
120 *           Compute elements J+1:M of J-th column.
121 *
122             IF( J.LT.M ) THEN
123                IFABS(A( J, J )) .GE. SFMIN ) THEN
124                   CALL CSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 )
125                ELSE
126                   DO 20 I = 1, M-J
127                      A( J+I, J ) = A( J+I, J ) / A( J, J )
128    20             CONTINUE
129                END IF
130             END IF
131 *
132          ELSE IF( INFO.EQ.0 ) THEN
133 *
134             INFO = J
135          END IF
136 *
137          IF( J.LT.MIN( M, N ) ) THEN
138 *
139 *           Update trailing submatrix.
140 *
141             CALL CGERU( M-J, N-J, -ONE, A( J+1, J ), 1, A( J, J+1 ),
142      $                  LDA, A( J+1, J+1 ), LDA )
143          END IF
144    10 CONTINUE
145       RETURN
146 *
147 *     End of CGETF2
148 *
149       END