1       SUBROUTINE CGETRF( M, N, A, LDA, IPIV, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.2) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       INTEGER            INFO, LDA, M, N
 10 *     ..
 11 *     .. Array Arguments ..
 12       INTEGER            IPIV( * )
 13       COMPLEX            A( LDA, * )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  CGETRF computes an LU factorization of a general M-by-N matrix A
 20 *  using partial pivoting with row interchanges.
 21 *
 22 *  The factorization has the form
 23 *     A = P * L * U
 24 *  where P is a permutation matrix, L is lower triangular with unit
 25 *  diagonal elements (lower trapezoidal if m > n), and U is upper
 26 *  triangular (upper trapezoidal if m < n).
 27 *
 28 *  This is the right-looking Level 3 BLAS version of the algorithm.
 29 *
 30 *  Arguments
 31 *  =========
 32 *
 33 *  M       (input) INTEGER
 34 *          The number of rows of the matrix A.  M >= 0.
 35 *
 36 *  N       (input) INTEGER
 37 *          The number of columns of the matrix A.  N >= 0.
 38 *
 39 *  A       (input/output) COMPLEX array, dimension (LDA,N)
 40 *          On entry, the M-by-N matrix to be factored.
 41 *          On exit, the factors L and U from the factorization
 42 *          A = P*L*U; the unit diagonal elements of L are not stored.
 43 *
 44 *  LDA     (input) INTEGER
 45 *          The leading dimension of the array A.  LDA >= max(1,M).
 46 *
 47 *  IPIV    (output) INTEGER array, dimension (min(M,N))
 48 *          The pivot indices; for 1 <= i <= min(M,N), row i of the
 49 *          matrix was interchanged with row IPIV(i).
 50 *
 51 *  INFO    (output) INTEGER
 52 *          = 0:  successful exit
 53 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 54 *          > 0:  if INFO = i, U(i,i) is exactly zero. The factorization
 55 *                has been completed, but the factor U is exactly
 56 *                singular, and division by zero will occur if it is used
 57 *                to solve a system of equations.
 58 *
 59 *  =====================================================================
 60 *
 61 *     .. Parameters ..
 62       COMPLEX            ONE
 63       PARAMETER          ( ONE = ( 1.0E+00.0E+0 ) )
 64 *     ..
 65 *     .. Local Scalars ..
 66       INTEGER            I, IINFO, J, JB, NB
 67 *     ..
 68 *     .. External Subroutines ..
 69       EXTERNAL           CGEMM, CGETF2, CLASWP, CTRSM, XERBLA
 70 *     ..
 71 *     .. External Functions ..
 72       INTEGER            ILAENV
 73       EXTERNAL           ILAENV
 74 *     ..
 75 *     .. Intrinsic Functions ..
 76       INTRINSIC          MAXMIN
 77 *     ..
 78 *     .. Executable Statements ..
 79 *
 80 *     Test the input parameters.
 81 *
 82       INFO = 0
 83       IF( M.LT.0 ) THEN
 84          INFO = -1
 85       ELSE IF( N.LT.0 ) THEN
 86          INFO = -2
 87       ELSE IF( LDA.LT.MAX1, M ) ) THEN
 88          INFO = -4
 89       END IF
 90       IF( INFO.NE.0 ) THEN
 91          CALL XERBLA( 'CGETRF'-INFO )
 92          RETURN
 93       END IF
 94 *
 95 *     Quick return if possible
 96 *
 97       IF( M.EQ.0 .OR. N.EQ.0 )
 98      $   RETURN
 99 *
100 *     Determine the block size for this environment.
101 *
102       NB = ILAENV( 1'CGETRF'' ', M, N, -1-1 )
103       IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN
104 *
105 *        Use unblocked code.
106 *
107          CALL CGETF2( M, N, A, LDA, IPIV, INFO )
108       ELSE
109 *
110 *        Use blocked code.
111 *
112          DO 20 J = 1MIN( M, N ), NB
113             JB = MINMIN( M, N )-J+1, NB )
114 *
115 *           Factor diagonal and subdiagonal blocks and test for exact
116 *           singularity.
117 *
118             CALL CGETF2( M-J+1, JB, A( J, J ), LDA, IPIV( J ), IINFO )
119 *
120 *           Adjust INFO and the pivot indices.
121 *
122             IF( INFO.EQ.0 .AND. IINFO.GT.0 )
123      $         INFO = IINFO + J - 1
124             DO 10 I = J, MIN( M, J+JB-1 )
125                IPIV( I ) = J - 1 + IPIV( I )
126    10       CONTINUE
127 *
128 *           Apply interchanges to columns 1:J-1.
129 *
130             CALL CLASWP( J-1, A, LDA, J, J+JB-1, IPIV, 1 )
131 *
132             IF( J+JB.LE.N ) THEN
133 *
134 *              Apply interchanges to columns J+JB:N.
135 *
136                CALL CLASWP( N-J-JB+1, A( 1, J+JB ), LDA, J, J+JB-1,
137      $                      IPIV, 1 )
138 *
139 *              Compute block row of U.
140 *
141                CALL CTRSM( 'Left''Lower''No transpose''Unit', JB,
142      $                     N-J-JB+1, ONE, A( J, J ), LDA, A( J, J+JB ),
143      $                     LDA )
144                IF( J+JB.LE.M ) THEN
145 *
146 *                 Update trailing submatrix.
147 *
148                   CALL CGEMM( 'No transpose''No transpose', M-J-JB+1,
149      $                        N-J-JB+1, JB, -ONE, A( J+JB, J ), LDA,
150      $                        A( J, J+JB ), LDA, ONE, A( J+JB, J+JB ),
151      $                        LDA )
152                END IF
153             END IF
154    20    CONTINUE
155       END IF
156       RETURN
157 *
158 *     End of CGETRF
159 *
160       END