1       SUBROUTINE CPOTRF( UPLO, N, A, LDA, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          UPLO
 10       INTEGER            INFO, LDA, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       COMPLEX            A( LDA, * )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  CPOTRF computes the Cholesky factorization of a complex Hermitian
 20 *  positive definite matrix A.
 21 *
 22 *  The factorization has the form
 23 *     A = U**H * U,  if UPLO = 'U', or
 24 *     A = L  * L**H,  if UPLO = 'L',
 25 *  where U is an upper triangular matrix and L is lower triangular.
 26 *
 27 *  This is the block version of the algorithm, calling Level 3 BLAS.
 28 *
 29 *  Arguments
 30 *  =========
 31 *
 32 *  UPLO    (input) CHARACTER*1
 33 *          = 'U':  Upper triangle of A is stored;
 34 *          = 'L':  Lower triangle of A is stored.
 35 *
 36 *  N       (input) INTEGER
 37 *          The order of the matrix A.  N >= 0.
 38 *
 39 *  A       (input/output) COMPLEX array, dimension (LDA,N)
 40 *          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
 41 *          N-by-N upper triangular part of A contains the upper
 42 *          triangular part of the matrix A, and the strictly lower
 43 *          triangular part of A is not referenced.  If UPLO = 'L', the
 44 *          leading N-by-N lower triangular part of A contains the lower
 45 *          triangular part of the matrix A, and the strictly upper
 46 *          triangular part of A is not referenced.
 47 *
 48 *          On exit, if INFO = 0, the factor U or L from the Cholesky
 49 *          factorization A = U**H*U or A = L*L**H.
 50 *
 51 *  LDA     (input) INTEGER
 52 *          The leading dimension of the array A.  LDA >= max(1,N).
 53 *
 54 *  INFO    (output) INTEGER
 55 *          = 0:  successful exit
 56 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 57 *          > 0:  if INFO = i, the leading minor of order i is not
 58 *                positive definite, and the factorization could not be
 59 *                completed.
 60 *
 61 *  =====================================================================
 62 *
 63 *     .. Parameters ..
 64       REAL               ONE
 65       COMPLEX            CONE
 66       PARAMETER          ( ONE = 1.0E+0, CONE = ( 1.0E+00.0E+0 ) )
 67 *     ..
 68 *     .. Local Scalars ..
 69       LOGICAL            UPPER
 70       INTEGER            J, JB, NB
 71 *     ..
 72 *     .. External Functions ..
 73       LOGICAL            LSAME
 74       INTEGER            ILAENV
 75       EXTERNAL           LSAME, ILAENV
 76 *     ..
 77 *     .. External Subroutines ..
 78       EXTERNAL           CGEMM, CHERK, CPOTF2, CTRSM, XERBLA
 79 *     ..
 80 *     .. Intrinsic Functions ..
 81       INTRINSIC          MAXMIN
 82 *     ..
 83 *     .. Executable Statements ..
 84 *
 85 *     Test the input parameters.
 86 *
 87       INFO = 0
 88       UPPER = LSAME( UPLO, 'U' )
 89       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 90          INFO = -1
 91       ELSE IF( N.LT.0 ) THEN
 92          INFO = -2
 93       ELSE IF( LDA.LT.MAX1, N ) ) THEN
 94          INFO = -4
 95       END IF
 96       IF( INFO.NE.0 ) THEN
 97          CALL XERBLA( 'CPOTRF'-INFO )
 98          RETURN
 99       END IF
100 *
101 *     Quick return if possible
102 *
103       IF( N.EQ.0 )
104      $   RETURN
105 *
106 *     Determine the block size for this environment.
107 *
108       NB = ILAENV( 1'CPOTRF', UPLO, N, -1-1-1 )
109       IF( NB.LE.1 .OR. NB.GE.N ) THEN
110 *
111 *        Use unblocked code.
112 *
113          CALL CPOTF2( UPLO, N, A, LDA, INFO )
114       ELSE
115 *
116 *        Use blocked code.
117 *
118          IF( UPPER ) THEN
119 *
120 *           Compute the Cholesky factorization A = U**H *U.
121 *
122             DO 10 J = 1, N, NB
123 *
124 *              Update and factorize the current diagonal block and test
125 *              for non-positive-definiteness.
126 *
127                JB = MIN( NB, N-J+1 )
128                CALL CHERK( 'Upper''Conjugate transpose', JB, J-1,
129      $                     -ONE, A( 1, J ), LDA, ONE, A( J, J ), LDA )
130                CALL CPOTF2( 'Upper', JB, A( J, J ), LDA, INFO )
131                IF( INFO.NE.0 )
132      $            GO TO 30
133                IF( J+JB.LE.N ) THEN
134 *
135 *                 Compute the current block row.
136 *
137                   CALL CGEMM( 'Conjugate transpose''No transpose', JB,
138      $                        N-J-JB+1, J-1-CONE, A( 1, J ), LDA,
139      $                        A( 1, J+JB ), LDA, CONE, A( J, J+JB ),
140      $                        LDA )
141                   CALL CTRSM( 'Left''Upper''Conjugate transpose',
142      $                        'Non-unit', JB, N-J-JB+1, CONE, A( J, J ),
143      $                        LDA, A( J, J+JB ), LDA )
144                END IF
145    10       CONTINUE
146 *
147          ELSE
148 *
149 *           Compute the Cholesky factorization A = L*L**H.
150 *
151             DO 20 J = 1, N, NB
152 *
153 *              Update and factorize the current diagonal block and test
154 *              for non-positive-definiteness.
155 *
156                JB = MIN( NB, N-J+1 )
157                CALL CHERK( 'Lower''No transpose', JB, J-1-ONE,
158      $                     A( J, 1 ), LDA, ONE, A( J, J ), LDA )
159                CALL CPOTF2( 'Lower', JB, A( J, J ), LDA, INFO )
160                IF( INFO.NE.0 )
161      $            GO TO 30
162                IF( J+JB.LE.N ) THEN
163 *
164 *                 Compute the current block column.
165 *
166                   CALL CGEMM( 'No transpose''Conjugate transpose',
167      $                        N-J-JB+1, JB, J-1-CONE, A( J+JB, 1 ),
168      $                        LDA, A( J, 1 ), LDA, CONE, A( J+JB, J ),
169      $                        LDA )
170                   CALL CTRSM( 'Right''Lower''Conjugate transpose',
171      $                        'Non-unit', N-J-JB+1, JB, CONE, A( J, J ),
172      $                        LDA, A( J+JB, J ), LDA )
173                END IF
174    20       CONTINUE
175          END IF
176       END IF
177       GO TO 40
178 *
179    30 CONTINUE
180       INFO = INFO + J - 1
181 *
182    40 CONTINUE
183       RETURN
184 *
185 *     End of CPOTRF
186 *
187       END