1       SUBROUTINE DGBCON( NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND,
  2      $                   WORK, IWORK, INFO )
  3 *
  4 *  -- LAPACK routine (version 3.3.1) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *  -- April 2011                                                      --
  8 *
  9 *     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
 10 *
 11 *     .. Scalar Arguments ..
 12       CHARACTER          NORM
 13       INTEGER            INFO, KL, KU, LDAB, N
 14       DOUBLE PRECISION   ANORM, RCOND
 15 *     ..
 16 *     .. Array Arguments ..
 17       INTEGER            IPIV( * ), IWORK( * )
 18       DOUBLE PRECISION   AB( LDAB, * ), WORK( * )
 19 *     ..
 20 *
 21 *  Purpose
 22 *  =======
 23 *
 24 *  DGBCON estimates the reciprocal of the condition number of a real
 25 *  general band matrix A, in either the 1-norm or the infinity-norm,
 26 *  using the LU factorization computed by DGBTRF.
 27 *
 28 *  An estimate is obtained for norm(inv(A)), and the reciprocal of the
 29 *  condition number is computed as
 30 *     RCOND = 1 / ( norm(A) * norm(inv(A)) ).
 31 *
 32 *  Arguments
 33 *  =========
 34 *
 35 *  NORM    (input) CHARACTER*1
 36 *          Specifies whether the 1-norm condition number or the
 37 *          infinity-norm condition number is required:
 38 *          = '1' or 'O':  1-norm;
 39 *          = 'I':         Infinity-norm.
 40 *
 41 *  N       (input) INTEGER
 42 *          The order of the matrix A.  N >= 0.
 43 *
 44 *  KL      (input) INTEGER
 45 *          The number of subdiagonals within the band of A.  KL >= 0.
 46 *
 47 *  KU      (input) INTEGER
 48 *          The number of superdiagonals within the band of A.  KU >= 0.
 49 *
 50 *  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N)
 51 *          Details of the LU factorization of the band matrix A, as
 52 *          computed by DGBTRF.  U is stored as an upper triangular band
 53 *          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
 54 *          the multipliers used during the factorization are stored in
 55 *          rows KL+KU+2 to 2*KL+KU+1.
 56 *
 57 *  LDAB    (input) INTEGER
 58 *          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.
 59 *
 60 *  IPIV    (input) INTEGER array, dimension (N)
 61 *          The pivot indices; for 1 <= i <= N, row i of the matrix was
 62 *          interchanged with row IPIV(i).
 63 *
 64 *  ANORM   (input) DOUBLE PRECISION
 65 *          If NORM = '1' or 'O', the 1-norm of the original matrix A.
 66 *          If NORM = 'I', the infinity-norm of the original matrix A.
 67 *
 68 *  RCOND   (output) DOUBLE PRECISION
 69 *          The reciprocal of the condition number of the matrix A,
 70 *          computed as RCOND = 1/(norm(A) * norm(inv(A))).
 71 *
 72 *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
 73 *
 74 *  IWORK   (workspace) INTEGER array, dimension (N)
 75 *
 76 *  INFO    (output) INTEGER
 77 *          = 0:  successful exit
 78 *          < 0: if INFO = -i, the i-th argument had an illegal value
 79 *
 80 *  =====================================================================
 81 *
 82 *     .. Parameters ..
 83       DOUBLE PRECISION   ONE, ZERO
 84       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 85 *     ..
 86 *     .. Local Scalars ..
 87       LOGICAL            LNOTI, ONENRM
 88       CHARACTER          NORMIN
 89       INTEGER            IX, J, JP, KASE, KASE1, KD, LM
 90       DOUBLE PRECISION   AINVNM, SCALE, SMLNUM, T
 91 *     ..
 92 *     .. Local Arrays ..
 93       INTEGER            ISAVE( 3 )
 94 *     ..
 95 *     .. External Functions ..
 96       LOGICAL            LSAME
 97       INTEGER            IDAMAX
 98       DOUBLE PRECISION   DDOT, DLAMCH
 99       EXTERNAL           LSAME, IDAMAX, DDOT, DLAMCH
100 *     ..
101 *     .. External Subroutines ..
102       EXTERNAL           DAXPY, DLACN2, DLATBS, DRSCL, XERBLA
103 *     ..
104 *     .. Intrinsic Functions ..
105       INTRINSIC          ABSMIN
106 *     ..
107 *     .. Executable Statements ..
108 *
109 *     Test the input parameters.
110 *
111       INFO = 0
112       ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
113       IF.NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
114          INFO = -1
115       ELSE IF( N.LT.0 ) THEN
116          INFO = -2
117       ELSE IF( KL.LT.0 ) THEN
118          INFO = -3
119       ELSE IF( KU.LT.0 ) THEN
120          INFO = -4
121       ELSE IF( LDAB.LT.2*KL+KU+1 ) THEN
122          INFO = -6
123       ELSE IF( ANORM.LT.ZERO ) THEN
124          INFO = -8
125       END IF
126       IF( INFO.NE.0 ) THEN
127          CALL XERBLA( 'DGBCON'-INFO )
128          RETURN
129       END IF
130 *
131 *     Quick return if possible
132 *
133       RCOND = ZERO
134       IF( N.EQ.0 ) THEN
135          RCOND = ONE
136          RETURN
137       ELSE IF( ANORM.EQ.ZERO ) THEN
138          RETURN
139       END IF
140 *
141       SMLNUM = DLAMCH( 'Safe minimum' )
142 *
143 *     Estimate the norm of inv(A).
144 *
145       AINVNM = ZERO
146       NORMIN = 'N'
147       IF( ONENRM ) THEN
148          KASE1 = 1
149       ELSE
150          KASE1 = 2
151       END IF
152       KD = KL + KU + 1
153       LNOTI = KL.GT.0
154       KASE = 0
155    10 CONTINUE
156       CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
157       IF( KASE.NE.0 ) THEN
158          IF( KASE.EQ.KASE1 ) THEN
159 *
160 *           Multiply by inv(L).
161 *
162             IF( LNOTI ) THEN
163                DO 20 J = 1, N - 1
164                   LM = MIN( KL, N-J )
165                   JP = IPIV( J )
166                   T = WORK( JP )
167                   IF( JP.NE.J ) THEN
168                      WORK( JP ) = WORK( J )
169                      WORK( J ) = T
170                   END IF
171                   CALL DAXPY( LM, -T, AB( KD+1, J ), 1, WORK( J+1 ), 1 )
172    20          CONTINUE
173             END IF
174 *
175 *           Multiply by inv(U).
176 *
177             CALL DLATBS( 'Upper''No transpose''Non-unit', NORMIN, N,
178      $                   KL+KU, AB, LDAB, WORK, SCALE, WORK( 2*N+1 ),
179      $                   INFO )
180          ELSE
181 *
182 *           Multiply by inv(U**T).
183 *
184             CALL DLATBS( 'Upper''Transpose''Non-unit', NORMIN, N,
185      $                   KL+KU, AB, LDAB, WORK, SCALE, WORK( 2*N+1 ),
186      $                   INFO )
187 *
188 *           Multiply by inv(L**T).
189 *
190             IF( LNOTI ) THEN
191                DO 30 J = N - 11-1
192                   LM = MIN( KL, N-J )
193                   WORK( J ) = WORK( J ) - DDOT( LM, AB( KD+1, J ), 1,
194      $                        WORK( J+1 ), 1 )
195                   JP = IPIV( J )
196                   IF( JP.NE.J ) THEN
197                      T = WORK( JP )
198                      WORK( JP ) = WORK( J )
199                      WORK( J ) = T
200                   END IF
201    30          CONTINUE
202             END IF
203          END IF
204 *
205 *        Divide X by 1/SCALE if doing so will not cause overflow.
206 *
207          NORMIN = 'Y'
208          IFSCALE.NE.ONE ) THEN
209             IX = IDAMAX( N, WORK, 1 )
210             IFSCALE.LT.ABS( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO )
211      $         GO TO 40
212             CALL DRSCL( N, SCALE, WORK, 1 )
213          END IF
214          GO TO 10
215       END IF
216 *
217 *     Compute the estimate of the reciprocal condition number.
218 *
219       IF( AINVNM.NE.ZERO )
220      $   RCOND = ( ONE / AINVNM ) / ANORM
221 *
222    40 CONTINUE
223       RETURN
224 *
225 *     End of DGBCON
226 *
227       END