1       SUBROUTINE DGECON( NORM, N, A, LDA, ANORM, RCOND, WORK, IWORK,
  2      $                   INFO )
  3 *
  4 *  -- LAPACK routine (version 3.3.1) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *  -- April 2011                                                      --
  8 *
  9 *     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
 10 *
 11 *     .. Scalar Arguments ..
 12       CHARACTER          NORM
 13       INTEGER            INFO, LDA, N
 14       DOUBLE PRECISION   ANORM, RCOND
 15 *     ..
 16 *     .. Array Arguments ..
 17       INTEGER            IWORK( * )
 18       DOUBLE PRECISION   A( LDA, * ), WORK( * )
 19 *     ..
 20 *
 21 *  Purpose
 22 *  =======
 23 *
 24 *  DGECON estimates the reciprocal of the condition number of a general
 25 *  real matrix A, in either the 1-norm or the infinity-norm, using
 26 *  the LU factorization computed by DGETRF.
 27 *
 28 *  An estimate is obtained for norm(inv(A)), and the reciprocal of the
 29 *  condition number is computed as
 30 *     RCOND = 1 / ( norm(A) * norm(inv(A)) ).
 31 *
 32 *  Arguments
 33 *  =========
 34 *
 35 *  NORM    (input) CHARACTER*1
 36 *          Specifies whether the 1-norm condition number or the
 37 *          infinity-norm condition number is required:
 38 *          = '1' or 'O':  1-norm;
 39 *          = 'I':         Infinity-norm.
 40 *
 41 *  N       (input) INTEGER
 42 *          The order of the matrix A.  N >= 0.
 43 *
 44 *  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
 45 *          The factors L and U from the factorization A = P*L*U
 46 *          as computed by DGETRF.
 47 *
 48 *  LDA     (input) INTEGER
 49 *          The leading dimension of the array A.  LDA >= max(1,N).
 50 *
 51 *  ANORM   (input) DOUBLE PRECISION
 52 *          If NORM = '1' or 'O', the 1-norm of the original matrix A.
 53 *          If NORM = 'I', the infinity-norm of the original matrix A.
 54 *
 55 *  RCOND   (output) DOUBLE PRECISION
 56 *          The reciprocal of the condition number of the matrix A,
 57 *          computed as RCOND = 1/(norm(A) * norm(inv(A))).
 58 *
 59 *  WORK    (workspace) DOUBLE PRECISION array, dimension (4*N)
 60 *
 61 *  IWORK   (workspace) INTEGER array, dimension (N)
 62 *
 63 *  INFO    (output) INTEGER
 64 *          = 0:  successful exit
 65 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 66 *
 67 *  =====================================================================
 68 *
 69 *     .. Parameters ..
 70       DOUBLE PRECISION   ONE, ZERO
 71       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 72 *     ..
 73 *     .. Local Scalars ..
 74       LOGICAL            ONENRM
 75       CHARACTER          NORMIN
 76       INTEGER            IX, KASE, KASE1
 77       DOUBLE PRECISION   AINVNM, SCALE, SL, SMLNUM, SU
 78 *     ..
 79 *     .. Local Arrays ..
 80       INTEGER            ISAVE( 3 )
 81 *     ..
 82 *     .. External Functions ..
 83       LOGICAL            LSAME
 84       INTEGER            IDAMAX
 85       DOUBLE PRECISION   DLAMCH
 86       EXTERNAL           LSAME, IDAMAX, DLAMCH
 87 *     ..
 88 *     .. External Subroutines ..
 89       EXTERNAL           DLACN2, DLATRS, DRSCL, XERBLA
 90 *     ..
 91 *     .. Intrinsic Functions ..
 92       INTRINSIC          ABSMAX
 93 *     ..
 94 *     .. Executable Statements ..
 95 *
 96 *     Test the input parameters.
 97 *
 98       INFO = 0
 99       ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
100       IF.NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
101          INFO = -1
102       ELSE IF( N.LT.0 ) THEN
103          INFO = -2
104       ELSE IF( LDA.LT.MAX1, N ) ) THEN
105          INFO = -4
106       ELSE IF( ANORM.LT.ZERO ) THEN
107          INFO = -5
108       END IF
109       IF( INFO.NE.0 ) THEN
110          CALL XERBLA( 'DGECON'-INFO )
111          RETURN
112       END IF
113 *
114 *     Quick return if possible
115 *
116       RCOND = ZERO
117       IF( N.EQ.0 ) THEN
118          RCOND = ONE
119          RETURN
120       ELSE IF( ANORM.EQ.ZERO ) THEN
121          RETURN
122       END IF
123 *
124       SMLNUM = DLAMCH( 'Safe minimum' )
125 *
126 *     Estimate the norm of inv(A).
127 *
128       AINVNM = ZERO
129       NORMIN = 'N'
130       IF( ONENRM ) THEN
131          KASE1 = 1
132       ELSE
133          KASE1 = 2
134       END IF
135       KASE = 0
136    10 CONTINUE
137       CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
138       IF( KASE.NE.0 ) THEN
139          IF( KASE.EQ.KASE1 ) THEN
140 *
141 *           Multiply by inv(L).
142 *
143             CALL DLATRS( 'Lower''No transpose''Unit', NORMIN, N, A,
144      $                   LDA, WORK, SL, WORK( 2*N+1 ), INFO )
145 *
146 *           Multiply by inv(U).
147 *
148             CALL DLATRS( 'Upper''No transpose''Non-unit', NORMIN, N,
149      $                   A, LDA, WORK, SU, WORK( 3*N+1 ), INFO )
150          ELSE
151 *
152 *           Multiply by inv(U**T).
153 *
154             CALL DLATRS( 'Upper''Transpose''Non-unit', NORMIN, N, A,
155      $                   LDA, WORK, SU, WORK( 3*N+1 ), INFO )
156 *
157 *           Multiply by inv(L**T).
158 *
159             CALL DLATRS( 'Lower''Transpose''Unit', NORMIN, N, A,
160      $                   LDA, WORK, SL, WORK( 2*N+1 ), INFO )
161          END IF
162 *
163 *        Divide X by 1/(SL*SU) if doing so will not cause overflow.
164 *
165          SCALE = SL*SU
166          NORMIN = 'Y'
167          IFSCALE.NE.ONE ) THEN
168             IX = IDAMAX( N, WORK, 1 )
169             IFSCALE.LT.ABS( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO )
170      $         GO TO 20
171             CALL DRSCL( N, SCALE, WORK, 1 )
172          END IF
173          GO TO 10
174       END IF
175 *
176 *     Compute the estimate of the reciprocal condition number.
177 *
178       IF( AINVNM.NE.ZERO )
179      $   RCOND = ( ONE / AINVNM ) / ANORM
180 *
181    20 CONTINUE
182       RETURN
183 *
184 *     End of DGECON
185 *
186       END