1       SUBROUTINE DGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, WR, WI,
  2      $                   VL, LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM,
  3      $                   RCONDE, RCONDV, WORK, LWORK, IWORK, INFO )
  4 *
  5 *  -- LAPACK driver routine (version 3.3.1) --
  6 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  7 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  8 *  -- April 2011                                                      --
  9 *
 10 *     .. Scalar Arguments ..
 11       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
 12       INTEGER            IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N
 13       DOUBLE PRECISION   ABNRM
 14 *     ..
 15 *     .. Array Arguments ..
 16       INTEGER            IWORK( * )
 17       DOUBLE PRECISION   A( LDA, * ), RCONDE( * ), RCONDV( * ),
 18      $                   SCALE* ), VL( LDVL, * ), VR( LDVR, * ),
 19      $                   WI( * ), WORK( * ), WR( * )
 20 *     ..
 21 *
 22 *  Purpose
 23 *  =======
 24 *
 25 *  DGEEVX computes for an N-by-N real nonsymmetric matrix A, the
 26 *  eigenvalues and, optionally, the left and/or right eigenvectors.
 27 *
 28 *  Optionally also, it computes a balancing transformation to improve
 29 *  the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
 30 *  SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues
 31 *  (RCONDE), and reciprocal condition numbers for the right
 32 *  eigenvectors (RCONDV).
 33 *
 34 *  The right eigenvector v(j) of A satisfies
 35 *                   A * v(j) = lambda(j) * v(j)
 36 *  where lambda(j) is its eigenvalue.
 37 *  The left eigenvector u(j) of A satisfies
 38 *                u(j)**T * A = lambda(j) * u(j)**T
 39 *  where u(j)**T denotes the transpose of u(j).
 40 *
 41 *  The computed eigenvectors are normalized to have Euclidean norm
 42 *  equal to 1 and largest component real.
 43 *
 44 *  Balancing a matrix means permuting the rows and columns to make it
 45 *  more nearly upper triangular, and applying a diagonal similarity
 46 *  transformation D * A * D**(-1), where D is a diagonal matrix, to
 47 *  make its rows and columns closer in norm and the condition numbers
 48 *  of its eigenvalues and eigenvectors smaller.  The computed
 49 *  reciprocal condition numbers correspond to the balanced matrix.
 50 *  Permuting rows and columns will not change the condition numbers
 51 *  (in exact arithmetic) but diagonal scaling will.  For further
 52 *  explanation of balancing, see section 4.10.2 of the LAPACK
 53 *  Users' Guide.
 54 *
 55 *  Arguments
 56 *  =========
 57 *
 58 *  BALANC  (input) CHARACTER*1
 59 *          Indicates how the input matrix should be diagonally scaled
 60 *          and/or permuted to improve the conditioning of its
 61 *          eigenvalues.
 62 *          = 'N': Do not diagonally scale or permute;
 63 *          = 'P': Perform permutations to make the matrix more nearly
 64 *                 upper triangular. Do not diagonally scale;
 65 *          = 'S': Diagonally scale the matrix, i.e. replace A by
 66 *                 D*A*D**(-1), where D is a diagonal matrix chosen
 67 *                 to make the rows and columns of A more equal in
 68 *                 norm. Do not permute;
 69 *          = 'B': Both diagonally scale and permute A.
 70 *
 71 *          Computed reciprocal condition numbers will be for the matrix
 72 *          after balancing and/or permuting. Permuting does not change
 73 *          condition numbers (in exact arithmetic), but balancing does.
 74 *
 75 *  JOBVL   (input) CHARACTER*1
 76 *          = 'N': left eigenvectors of A are not computed;
 77 *          = 'V': left eigenvectors of A are computed.
 78 *          If SENSE = 'E' or 'B', JOBVL must = 'V'.
 79 *
 80 *  JOBVR   (input) CHARACTER*1
 81 *          = 'N': right eigenvectors of A are not computed;
 82 *          = 'V': right eigenvectors of A are computed.
 83 *          If SENSE = 'E' or 'B', JOBVR must = 'V'.
 84 *
 85 *  SENSE   (input) CHARACTER*1
 86 *          Determines which reciprocal condition numbers are computed.
 87 *          = 'N': None are computed;
 88 *          = 'E': Computed for eigenvalues only;
 89 *          = 'V': Computed for right eigenvectors only;
 90 *          = 'B': Computed for eigenvalues and right eigenvectors.
 91 *
 92 *          If SENSE = 'E' or 'B', both left and right eigenvectors
 93 *          must also be computed (JOBVL = 'V' and JOBVR = 'V').
 94 *
 95 *  N       (input) INTEGER
 96 *          The order of the matrix A. N >= 0.
 97 *
 98 *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
 99 *          On entry, the N-by-N matrix A.
100 *          On exit, A has been overwritten.  If JOBVL = 'V' or
101 *          JOBVR = 'V', A contains the real Schur form of the balanced
102 *          version of the input matrix A.
103 *
104 *  LDA     (input) INTEGER
105 *          The leading dimension of the array A.  LDA >= max(1,N).
106 *
107 *  WR      (output) DOUBLE PRECISION array, dimension (N)
108 *  WI      (output) DOUBLE PRECISION array, dimension (N)
109 *          WR and WI contain the real and imaginary parts,
110 *          respectively, of the computed eigenvalues.  Complex
111 *          conjugate pairs of eigenvalues will appear consecutively
112 *          with the eigenvalue having the positive imaginary part
113 *          first.
114 *
115 *  VL      (output) DOUBLE PRECISION array, dimension (LDVL,N)
116 *          If JOBVL = 'V', the left eigenvectors u(j) are stored one
117 *          after another in the columns of VL, in the same order
118 *          as their eigenvalues.
119 *          If JOBVL = 'N', VL is not referenced.
120 *          If the j-th eigenvalue is real, then u(j) = VL(:,j),
121 *          the j-th column of VL.
122 *          If the j-th and (j+1)-st eigenvalues form a complex
123 *          conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
124 *          u(j+1) = VL(:,j) - i*VL(:,j+1).
125 *
126 *  LDVL    (input) INTEGER
127 *          The leading dimension of the array VL.  LDVL >= 1; if
128 *          JOBVL = 'V', LDVL >= N.
129 *
130 *  VR      (output) DOUBLE PRECISION array, dimension (LDVR,N)
131 *          If JOBVR = 'V', the right eigenvectors v(j) are stored one
132 *          after another in the columns of VR, in the same order
133 *          as their eigenvalues.
134 *          If JOBVR = 'N', VR is not referenced.
135 *          If the j-th eigenvalue is real, then v(j) = VR(:,j),
136 *          the j-th column of VR.
137 *          If the j-th and (j+1)-st eigenvalues form a complex
138 *          conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
139 *          v(j+1) = VR(:,j) - i*VR(:,j+1).
140 *
141 *  LDVR    (input) INTEGER
142 *          The leading dimension of the array VR.  LDVR >= 1, and if
143 *          JOBVR = 'V', LDVR >= N.
144 *
145 *  ILO     (output) INTEGER
146 *  IHI     (output) INTEGER
147 *          ILO and IHI are integer values determined when A was
148 *          balanced.  The balanced A(i,j) = 0 if I > J and
149 *          J = 1,...,ILO-1 or I = IHI+1,...,N.
150 *
151 *  SCALE   (output) DOUBLE PRECISION array, dimension (N)
152 *          Details of the permutations and scaling factors applied
153 *          when balancing A.  If P(j) is the index of the row and column
154 *          interchanged with row and column j, and D(j) is the scaling
155 *          factor applied to row and column j, then
156 *          SCALE(J) = P(J),    for J = 1,...,ILO-1
157 *                   = D(J),    for J = ILO,...,IHI
158 *                   = P(J)     for J = IHI+1,...,N.
159 *          The order in which the interchanges are made is N to IHI+1,
160 *          then 1 to ILO-1.
161 *
162 *  ABNRM   (output) DOUBLE PRECISION
163 *          The one-norm of the balanced matrix (the maximum
164 *          of the sum of absolute values of elements of any column).
165 *
166 *  RCONDE  (output) DOUBLE PRECISION array, dimension (N)
167 *          RCONDE(j) is the reciprocal condition number of the j-th
168 *          eigenvalue.
169 *
170 *  RCONDV  (output) DOUBLE PRECISION array, dimension (N)
171 *          RCONDV(j) is the reciprocal condition number of the j-th
172 *          right eigenvector.
173 *
174 *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
175 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
176 *
177 *  LWORK   (input) INTEGER
178 *          The dimension of the array WORK.   If SENSE = 'N' or 'E',
179 *          LWORK >= max(1,2*N), and if JOBVL = 'V' or JOBVR = 'V',
180 *          LWORK >= 3*N.  If SENSE = 'V' or 'B', LWORK >= N*(N+6).
181 *          For good performance, LWORK must generally be larger.
182 *
183 *          If LWORK = -1, then a workspace query is assumed; the routine
184 *          only calculates the optimal size of the WORK array, returns
185 *          this value as the first entry of the WORK array, and no error
186 *          message related to LWORK is issued by XERBLA.
187 *
188 *  IWORK   (workspace) INTEGER array, dimension (2*N-2)
189 *          If SENSE = 'N' or 'E', not referenced.
190 *
191 *  INFO    (output) INTEGER
192 *          = 0:  successful exit
193 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
194 *          > 0:  if INFO = i, the QR algorithm failed to compute all the
195 *                eigenvalues, and no eigenvectors or condition numbers
196 *                have been computed; elements 1:ILO-1 and i+1:N of WR
197 *                and WI contain eigenvalues which have converged.
198 *
199 *  =====================================================================
200 *
201 *     .. Parameters ..
202       DOUBLE PRECISION   ZERO, ONE
203       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
204 *     ..
205 *     .. Local Scalars ..
206       LOGICAL            LQUERY, SCALEA, WANTVL, WANTVR, WNTSNB, WNTSNE,
207      $                   WNTSNN, WNTSNV
208       CHARACTER          JOB, SIDE
209       INTEGER            HSWORK, I, ICOND, IERR, ITAU, IWRK, K, MAXWRK,
210      $                   MINWRK, NOUT
211       DOUBLE PRECISION   ANRM, BIGNUM, CS, CSCALE, EPS, R, SCL, SMLNUM,
212      $                   SN
213 *     ..
214 *     .. Local Arrays ..
215       LOGICAL            SELECT1 )
216       DOUBLE PRECISION   DUM( 1 )
217 *     ..
218 *     .. External Subroutines ..
219       EXTERNAL           DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLABAD, DLACPY,
220      $                   DLARTG, DLASCL, DORGHR, DROT, DSCAL, DTREVC,
221      $                   DTRSNA, XERBLA
222 *     ..
223 *     .. External Functions ..
224       LOGICAL            LSAME
225       INTEGER            IDAMAX, ILAENV
226       DOUBLE PRECISION   DLAMCH, DLANGE, DLAPY2, DNRM2
227       EXTERNAL           LSAME, IDAMAX, ILAENV, DLAMCH, DLANGE, DLAPY2,
228      $                   DNRM2
229 *     ..
230 *     .. Intrinsic Functions ..
231       INTRINSIC          MAXSQRT
232 *     ..
233 *     .. Executable Statements ..
234 *
235 *     Test the input arguments
236 *
237       INFO = 0
238       LQUERY = ( LWORK.EQ.-1 )
239       WANTVL = LSAME( JOBVL, 'V' )
240       WANTVR = LSAME( JOBVR, 'V' )
241       WNTSNN = LSAME( SENSE, 'N' )
242       WNTSNE = LSAME( SENSE, 'E' )
243       WNTSNV = LSAME( SENSE, 'V' )
244       WNTSNB = LSAME( SENSE, 'B' )
245       IF.NOT.( LSAME( BALANC, 'N' ) .OR. LSAME( BALANC,
246      $    'S' ) .OR. LSAME( BALANC, 'P' ) .OR. LSAME( BALANC, 'B' ) ) )
247      $     THEN
248          INFO = -1
249       ELSE IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
250          INFO = -2
251       ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
252          INFO = -3
253       ELSE IF.NOT.( WNTSNN .OR. WNTSNE .OR. WNTSNB .OR. WNTSNV ) .OR.
254      $         ( ( WNTSNE .OR. WNTSNB ) .AND. .NOT.( WANTVL .AND.
255      $         WANTVR ) ) ) THEN
256          INFO = -4
257       ELSE IF( N.LT.0 ) THEN
258          INFO = -5
259       ELSE IF( LDA.LT.MAX1, N ) ) THEN
260          INFO = -7
261       ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
262          INFO = -11
263       ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
264          INFO = -13
265       END IF
266 *
267 *     Compute workspace
268 *      (Note: Comments in the code beginning "Workspace:" describe the
269 *       minimal amount of workspace needed at that point in the code,
270 *       as well as the preferred amount for good performance.
271 *       NB refers to the optimal block size for the immediately
272 *       following subroutine, as returned by ILAENV.
273 *       HSWORK refers to the workspace preferred by DHSEQR, as
274 *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
275 *       the worst case.)
276 *
277       IF( INFO.EQ.0 ) THEN
278          IF( N.EQ.0 ) THEN
279             MINWRK = 1
280             MAXWRK = 1
281          ELSE
282             MAXWRK = N + N*ILAENV( 1'DGEHRD'' ', N, 1, N, 0 )
283 *
284             IF( WANTVL ) THEN
285                CALL DHSEQR( 'S''V', N, 1, N, A, LDA, WR, WI, VL, LDVL,
286      $                WORK, -1, INFO )
287             ELSE IF( WANTVR ) THEN
288                CALL DHSEQR( 'S''V', N, 1, N, A, LDA, WR, WI, VR, LDVR,
289      $                WORK, -1, INFO )
290             ELSE
291                IF( WNTSNN ) THEN
292                   CALL DHSEQR( 'E''N', N, 1, N, A, LDA, WR, WI, VR,
293      $                LDVR, WORK, -1, INFO )
294                ELSE
295                   CALL DHSEQR( 'S''N', N, 1, N, A, LDA, WR, WI, VR,
296      $                LDVR, WORK, -1, INFO )
297                END IF
298             END IF
299             HSWORK = WORK( 1 )
300 *
301             IF( ( .NOT.WANTVL ) .AND. ( .NOT.WANTVR ) ) THEN
302                MINWRK = 2*N
303                IF.NOT.WNTSNN )
304      $            MINWRK = MAX( MINWRK, N*N+6*N )
305                MAXWRK = MAX( MAXWRK, HSWORK )
306                IF.NOT.WNTSNN )
307      $            MAXWRK = MAX( MAXWRK, N*+ 6*N )
308             ELSE
309                MINWRK = 3*N
310                IF( ( .NOT.WNTSNN ) .AND. ( .NOT.WNTSNE ) )
311      $            MINWRK = MAX( MINWRK, N*+ 6*N )
312                MAXWRK = MAX( MAXWRK, HSWORK )
313                MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1'DORGHR',
314      $                       ' ', N, 1, N, -1 ) )
315                IF( ( .NOT.WNTSNN ) .AND. ( .NOT.WNTSNE ) )
316      $            MAXWRK = MAX( MAXWRK, N*+ 6*N )
317                MAXWRK = MAX( MAXWRK, 3*N )
318             END IF
319             MAXWRK = MAX( MAXWRK, MINWRK )
320          END IF
321          WORK( 1 ) = MAXWRK
322 *
323          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
324             INFO = -21
325          END IF
326       END IF
327 *
328       IF( INFO.NE.0 ) THEN
329          CALL XERBLA( 'DGEEVX'-INFO )
330          RETURN
331       ELSE IF( LQUERY ) THEN
332          RETURN
333       END IF
334 *
335 *     Quick return if possible
336 *
337       IF( N.EQ.0 )
338      $   RETURN
339 *
340 *     Get machine constants
341 *
342       EPS = DLAMCH( 'P' )
343       SMLNUM = DLAMCH( 'S' )
344       BIGNUM = ONE / SMLNUM
345       CALL DLABAD( SMLNUM, BIGNUM )
346       SMLNUM = SQRT( SMLNUM ) / EPS
347       BIGNUM = ONE / SMLNUM
348 *
349 *     Scale A if max element outside range [SMLNUM,BIGNUM]
350 *
351       ICOND = 0
352       ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
353       SCALEA = .FALSE.
354       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
355          SCALEA = .TRUE.
356          CSCALE = SMLNUM
357       ELSE IF( ANRM.GT.BIGNUM ) THEN
358          SCALEA = .TRUE.
359          CSCALE = BIGNUM
360       END IF
361       IF( SCALEA )
362      $   CALL DLASCL( 'G'00, ANRM, CSCALE, N, N, A, LDA, IERR )
363 *
364 *     Balance the matrix and compute ABNRM
365 *
366       CALL DGEBAL( BALANC, N, A, LDA, ILO, IHI, SCALE, IERR )
367       ABNRM = DLANGE( '1', N, N, A, LDA, DUM )
368       IF( SCALEA ) THEN
369          DUM( 1 ) = ABNRM
370          CALL DLASCL( 'G'00, CSCALE, ANRM, 11, DUM, 1, IERR )
371          ABNRM = DUM( 1 )
372       END IF
373 *
374 *     Reduce to upper Hessenberg form
375 *     (Workspace: need 2*N, prefer N+N*NB)
376 *
377       ITAU = 1
378       IWRK = ITAU + N
379       CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
380      $             LWORK-IWRK+1, IERR )
381 *
382       IF( WANTVL ) THEN
383 *
384 *        Want left eigenvectors
385 *        Copy Householder vectors to VL
386 *
387          SIDE = 'L'
388          CALL DLACPY( 'L', N, N, A, LDA, VL, LDVL )
389 *
390 *        Generate orthogonal matrix in VL
391 *        (Workspace: need 2*N-1, prefer N+(N-1)*NB)
392 *
393          CALL DORGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
394      $                LWORK-IWRK+1, IERR )
395 *
396 *        Perform QR iteration, accumulating Schur vectors in VL
397 *        (Workspace: need 1, prefer HSWORK (see comments) )
398 *
399          IWRK = ITAU
400          CALL DHSEQR( 'S''V', N, ILO, IHI, A, LDA, WR, WI, VL, LDVL,
401      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
402 *
403          IF( WANTVR ) THEN
404 *
405 *           Want left and right eigenvectors
406 *           Copy Schur vectors to VR
407 *
408             SIDE = 'B'
409             CALL DLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
410          END IF
411 *
412       ELSE IF( WANTVR ) THEN
413 *
414 *        Want right eigenvectors
415 *        Copy Householder vectors to VR
416 *
417          SIDE = 'R'
418          CALL DLACPY( 'L', N, N, A, LDA, VR, LDVR )
419 *
420 *        Generate orthogonal matrix in VR
421 *        (Workspace: need 2*N-1, prefer N+(N-1)*NB)
422 *
423          CALL DORGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
424      $                LWORK-IWRK+1, IERR )
425 *
426 *        Perform QR iteration, accumulating Schur vectors in VR
427 *        (Workspace: need 1, prefer HSWORK (see comments) )
428 *
429          IWRK = ITAU
430          CALL DHSEQR( 'S''V', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
431      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
432 *
433       ELSE
434 *
435 *        Compute eigenvalues only
436 *        If condition numbers desired, compute Schur form
437 *
438          IF( WNTSNN ) THEN
439             JOB = 'E'
440          ELSE
441             JOB = 'S'
442          END IF
443 *
444 *        (Workspace: need 1, prefer HSWORK (see comments) )
445 *
446          IWRK = ITAU
447          CALL DHSEQR( JOB, 'N', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
448      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
449       END IF
450 *
451 *     If INFO > 0 from DHSEQR, then quit
452 *
453       IF( INFO.GT.0 )
454      $   GO TO 50
455 *
456       IF( WANTVL .OR. WANTVR ) THEN
457 *
458 *        Compute left and/or right eigenvectors
459 *        (Workspace: need 3*N)
460 *
461          CALL DTREVC( SIDE, 'B'SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
462      $                N, NOUT, WORK( IWRK ), IERR )
463       END IF
464 *
465 *     Compute condition numbers if desired
466 *     (Workspace: need N*N+6*N unless SENSE = 'E')
467 *
468       IF.NOT.WNTSNN ) THEN
469          CALL DTRSNA( SENSE, 'A'SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
470      $                RCONDE, RCONDV, N, NOUT, WORK( IWRK ), N, IWORK,
471      $                ICOND )
472       END IF
473 *
474       IF( WANTVL ) THEN
475 *
476 *        Undo balancing of left eigenvectors
477 *
478          CALL DGEBAK( BALANC, 'L', N, ILO, IHI, SCALE, N, VL, LDVL,
479      $                IERR )
480 *
481 *        Normalize left eigenvectors and make largest component real
482 *
483          DO 20 I = 1, N
484             IF( WI( I ).EQ.ZERO ) THEN
485                SCL = ONE / DNRM2( N, VL( 1, I ), 1 )
486                CALL DSCAL( N, SCL, VL( 1, I ), 1 )
487             ELSE IF( WI( I ).GT.ZERO ) THEN
488                SCL = ONE / DLAPY2( DNRM2( N, VL( 1, I ), 1 ),
489      $               DNRM2( N, VL( 1, I+1 ), 1 ) )
490                CALL DSCAL( N, SCL, VL( 1, I ), 1 )
491                CALL DSCAL( N, SCL, VL( 1, I+1 ), 1 )
492                DO 10 K = 1, N
493                   WORK( K ) = VL( K, I )**2 + VL( K, I+1 )**2
494    10          CONTINUE
495                K = IDAMAX( N, WORK, 1 )
496                CALL DLARTG( VL( K, I ), VL( K, I+1 ), CS, SN, R )
497                CALL DROT( N, VL( 1, I ), 1, VL( 1, I+1 ), 1, CS, SN )
498                VL( K, I+1 ) = ZERO
499             END IF
500    20    CONTINUE
501       END IF
502 *
503       IF( WANTVR ) THEN
504 *
505 *        Undo balancing of right eigenvectors
506 *
507          CALL DGEBAK( BALANC, 'R', N, ILO, IHI, SCALE, N, VR, LDVR,
508      $                IERR )
509 *
510 *        Normalize right eigenvectors and make largest component real
511 *
512          DO 40 I = 1, N
513             IF( WI( I ).EQ.ZERO ) THEN
514                SCL = ONE / DNRM2( N, VR( 1, I ), 1 )
515                CALL DSCAL( N, SCL, VR( 1, I ), 1 )
516             ELSE IF( WI( I ).GT.ZERO ) THEN
517                SCL = ONE / DLAPY2( DNRM2( N, VR( 1, I ), 1 ),
518      $               DNRM2( N, VR( 1, I+1 ), 1 ) )
519                CALL DSCAL( N, SCL, VR( 1, I ), 1 )
520                CALL DSCAL( N, SCL, VR( 1, I+1 ), 1 )
521                DO 30 K = 1, N
522                   WORK( K ) = VR( K, I )**2 + VR( K, I+1 )**2
523    30          CONTINUE
524                K = IDAMAX( N, WORK, 1 )
525                CALL DLARTG( VR( K, I ), VR( K, I+1 ), CS, SN, R )
526                CALL DROT( N, VR( 1, I ), 1, VR( 1, I+1 ), 1, CS, SN )
527                VR( K, I+1 ) = ZERO
528             END IF
529    40    CONTINUE
530       END IF
531 *
532 *     Undo scaling if necessary
533 *
534    50 CONTINUE
535       IF( SCALEA ) THEN
536          CALL DLASCL( 'G'00, CSCALE, ANRM, N-INFO, 1, WR( INFO+1 ),
537      $                MAX( N-INFO, 1 ), IERR )
538          CALL DLASCL( 'G'00, CSCALE, ANRM, N-INFO, 1, WI( INFO+1 ),
539      $                MAX( N-INFO, 1 ), IERR )
540          IF( INFO.EQ.0 ) THEN
541             IF( ( WNTSNV .OR. WNTSNB ) .AND. ICOND.EQ.0 )
542      $         CALL DLASCL( 'G'00, CSCALE, ANRM, N, 1, RCONDV, N,
543      $                      IERR )
544          ELSE
545             CALL DLASCL( 'G'00, CSCALE, ANRM, ILO-11, WR, N,
546      $                   IERR )
547             CALL DLASCL( 'G'00, CSCALE, ANRM, ILO-11, WI, N,
548      $                   IERR )
549          END IF
550       END IF
551 *
552       WORK( 1 ) = MAXWRK
553       RETURN
554 *
555 *     End of DGEEVX
556 *
557       END