1       SUBROUTINE DGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHAR,
  2      $                  ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
  3      $                  LWORK, INFO )
  4 *
  5 *  -- LAPACK driver routine (version 3.2) --
  6 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  7 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  8 *     November 2006
  9 *
 10 *     .. Scalar Arguments ..
 11       CHARACTER          JOBVSL, JOBVSR
 12       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
 13 *     ..
 14 *     .. Array Arguments ..
 15       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
 16      $                   B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
 17      $                   VSR( LDVSR, * ), WORK( * )
 18 *     ..
 19 *
 20 *  Purpose
 21 *  =======
 22 *
 23 *  This routine is deprecated and has been replaced by routine DGGES.
 24 *
 25 *  DGEGS computes the eigenvalues, real Schur form, and, optionally,
 26 *  left and or/right Schur vectors of a real matrix pair (A,B).
 27 *  Given two square matrices A and B, the generalized real Schur
 28 *  factorization has the form
 29 *
 30 *    A = Q*S*Z**T,  B = Q*T*Z**T
 31 *
 32 *  where Q and Z are orthogonal matrices, T is upper triangular, and S
 33 *  is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal
 34 *  blocks, the 2-by-2 blocks corresponding to complex conjugate pairs
 35 *  of eigenvalues of (A,B).  The columns of Q are the left Schur vectors
 36 *  and the columns of Z are the right Schur vectors.
 37 *
 38 *  If only the eigenvalues of (A,B) are needed, the driver routine
 39 *  DGEGV should be used instead.  See DGEGV for a description of the
 40 *  eigenvalues of the generalized nonsymmetric eigenvalue problem
 41 *  (GNEP).
 42 *
 43 *  Arguments
 44 *  =========
 45 *
 46 *  JOBVSL  (input) CHARACTER*1
 47 *          = 'N':  do not compute the left Schur vectors;
 48 *          = 'V':  compute the left Schur vectors (returned in VSL).
 49 *
 50 *  JOBVSR  (input) CHARACTER*1
 51 *          = 'N':  do not compute the right Schur vectors;
 52 *          = 'V':  compute the right Schur vectors (returned in VSR).
 53 *
 54 *  N       (input) INTEGER
 55 *          The order of the matrices A, B, VSL, and VSR.  N >= 0.
 56 *
 57 *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
 58 *          On entry, the matrix A.
 59 *          On exit, the upper quasi-triangular matrix S from the
 60 *          generalized real Schur factorization.
 61 *
 62 *  LDA     (input) INTEGER
 63 *          The leading dimension of A.  LDA >= max(1,N).
 64 *
 65 *  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)
 66 *          On entry, the matrix B.
 67 *          On exit, the upper triangular matrix T from the generalized
 68 *          real Schur factorization.
 69 *
 70 *  LDB     (input) INTEGER
 71 *          The leading dimension of B.  LDB >= max(1,N).
 72 *
 73 *  ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
 74 *          The real parts of each scalar alpha defining an eigenvalue
 75 *          of GNEP.
 76 *
 77 *  ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
 78 *          The imaginary parts of each scalar alpha defining an
 79 *          eigenvalue of GNEP.  If ALPHAI(j) is zero, then the j-th
 80 *          eigenvalue is real; if positive, then the j-th and (j+1)-st
 81 *          eigenvalues are a complex conjugate pair, with
 82 *          ALPHAI(j+1) = -ALPHAI(j).
 83 *
 84 *  BETA    (output) DOUBLE PRECISION array, dimension (N)
 85 *          The scalars beta that define the eigenvalues of GNEP.
 86 *          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
 87 *          beta = BETA(j) represent the j-th eigenvalue of the matrix
 88 *          pair (A,B), in one of the forms lambda = alpha/beta or
 89 *          mu = beta/alpha.  Since either lambda or mu may overflow,
 90 *          they should not, in general, be computed.
 91 *
 92 *  VSL     (output) DOUBLE PRECISION array, dimension (LDVSL,N)
 93 *          If JOBVSL = 'V', the matrix of left Schur vectors Q.
 94 *          Not referenced if JOBVSL = 'N'.
 95 *
 96 *  LDVSL   (input) INTEGER
 97 *          The leading dimension of the matrix VSL. LDVSL >=1, and
 98 *          if JOBVSL = 'V', LDVSL >= N.
 99 *
100 *  VSR     (output) DOUBLE PRECISION array, dimension (LDVSR,N)
101 *          If JOBVSR = 'V', the matrix of right Schur vectors Z.
102 *          Not referenced if JOBVSR = 'N'.
103 *
104 *  LDVSR   (input) INTEGER
105 *          The leading dimension of the matrix VSR. LDVSR >= 1, and
106 *          if JOBVSR = 'V', LDVSR >= N.
107 *
108 *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
109 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
110 *
111 *  LWORK   (input) INTEGER
112 *          The dimension of the array WORK.  LWORK >= max(1,4*N).
113 *          For good performance, LWORK must generally be larger.
114 *          To compute the optimal value of LWORK, call ILAENV to get
115 *          blocksizes (for DGEQRF, DORMQR, and DORGQR.)  Then compute:
116 *          NB  -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR
117 *          The optimal LWORK is  2*N + N*(NB+1).
118 *
119 *          If LWORK = -1, then a workspace query is assumed; the routine
120 *          only calculates the optimal size of the WORK array, returns
121 *          this value as the first entry of the WORK array, and no error
122 *          message related to LWORK is issued by XERBLA.
123 *
124 *  INFO    (output) INTEGER
125 *          = 0:  successful exit
126 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
127 *          = 1,...,N:
128 *                The QZ iteration failed.  (A,B) are not in Schur
129 *                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
130 *                be correct for j=INFO+1,...,N.
131 *          > N:  errors that usually indicate LAPACK problems:
132 *                =N+1: error return from DGGBAL
133 *                =N+2: error return from DGEQRF
134 *                =N+3: error return from DORMQR
135 *                =N+4: error return from DORGQR
136 *                =N+5: error return from DGGHRD
137 *                =N+6: error return from DHGEQZ (other than failed
138 *                                                iteration)
139 *                =N+7: error return from DGGBAK (computing VSL)
140 *                =N+8: error return from DGGBAK (computing VSR)
141 *                =N+9: error return from DLASCL (various places)
142 *
143 *  =====================================================================
144 *
145 *     .. Parameters ..
146       DOUBLE PRECISION   ZERO, ONE
147       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
148 *     ..
149 *     .. Local Scalars ..
150       LOGICAL            ILASCL, ILBSCL, ILVSL, ILVSR, LQUERY
151       INTEGER            ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
152      $                   IRIGHT, IROWS, ITAU, IWORK, LOPT, LWKMIN,
153      $                   LWKOPT, NB, NB1, NB2, NB3
154       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
155      $                   SAFMIN, SMLNUM
156 *     ..
157 *     .. External Subroutines ..
158       EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLACPY,
159      $                   DLASCL, DLASET, DORGQR, DORMQR, XERBLA
160 *     ..
161 *     .. External Functions ..
162       LOGICAL            LSAME
163       INTEGER            ILAENV
164       DOUBLE PRECISION   DLAMCH, DLANGE
165       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
166 *     ..
167 *     .. Intrinsic Functions ..
168       INTRINSIC          INTMAX
169 *     ..
170 *     .. Executable Statements ..
171 *
172 *     Decode the input arguments
173 *
174       IF( LSAME( JOBVSL, 'N' ) ) THEN
175          IJOBVL = 1
176          ILVSL = .FALSE.
177       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
178          IJOBVL = 2
179          ILVSL = .TRUE.
180       ELSE
181          IJOBVL = -1
182          ILVSL = .FALSE.
183       END IF
184 *
185       IF( LSAME( JOBVSR, 'N' ) ) THEN
186          IJOBVR = 1
187          ILVSR = .FALSE.
188       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
189          IJOBVR = 2
190          ILVSR = .TRUE.
191       ELSE
192          IJOBVR = -1
193          ILVSR = .FALSE.
194       END IF
195 *
196 *     Test the input arguments
197 *
198       LWKMIN = MAX4*N, 1 )
199       LWKOPT = LWKMIN
200       WORK( 1 ) = LWKOPT
201       LQUERY = ( LWORK.EQ.-1 )
202       INFO = 0
203       IF( IJOBVL.LE.0 ) THEN
204          INFO = -1
205       ELSE IF( IJOBVR.LE.0 ) THEN
206          INFO = -2
207       ELSE IF( N.LT.0 ) THEN
208          INFO = -3
209       ELSE IF( LDA.LT.MAX1, N ) ) THEN
210          INFO = -5
211       ELSE IF( LDB.LT.MAX1, N ) ) THEN
212          INFO = -7
213       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
214          INFO = -12
215       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
216          INFO = -14
217       ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
218          INFO = -16
219       END IF
220 *
221       IF( INFO.EQ.0 ) THEN
222          NB1 = ILAENV( 1'DGEQRF'' ', N, N, -1-1 )
223          NB2 = ILAENV( 1'DORMQR'' ', N, N, N, -1 )
224          NB3 = ILAENV( 1'DORGQR'' ', N, N, N, -1 )
225          NB = MAX( NB1, NB2, NB3 )
226          LOPT = 2*+ N*( NB+1 )
227          WORK( 1 ) = LOPT
228       END IF
229 *
230       IF( INFO.NE.0 ) THEN
231          CALL XERBLA( 'DGEGS '-INFO )
232          RETURN
233       ELSE IF( LQUERY ) THEN
234          RETURN
235       END IF
236 *
237 *     Quick return if possible
238 *
239       IF( N.EQ.0 )
240      $   RETURN
241 *
242 *     Get machine constants
243 *
244       EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
245       SAFMIN = DLAMCH( 'S' )
246       SMLNUM = N*SAFMIN / EPS
247       BIGNUM = ONE / SMLNUM
248 *
249 *     Scale A if max element outside range [SMLNUM,BIGNUM]
250 *
251       ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
252       ILASCL = .FALSE.
253       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
254          ANRMTO = SMLNUM
255          ILASCL = .TRUE.
256       ELSE IF( ANRM.GT.BIGNUM ) THEN
257          ANRMTO = BIGNUM
258          ILASCL = .TRUE.
259       END IF
260 *
261       IF( ILASCL ) THEN
262          CALL DLASCL( 'G'-1-1, ANRM, ANRMTO, N, N, A, LDA, IINFO )
263          IF( IINFO.NE.0 ) THEN
264             INFO = N + 9
265             RETURN
266          END IF
267       END IF
268 *
269 *     Scale B if max element outside range [SMLNUM,BIGNUM]
270 *
271       BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
272       ILBSCL = .FALSE.
273       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
274          BNRMTO = SMLNUM
275          ILBSCL = .TRUE.
276       ELSE IF( BNRM.GT.BIGNUM ) THEN
277          BNRMTO = BIGNUM
278          ILBSCL = .TRUE.
279       END IF
280 *
281       IF( ILBSCL ) THEN
282          CALL DLASCL( 'G'-1-1, BNRM, BNRMTO, N, N, B, LDB, IINFO )
283          IF( IINFO.NE.0 ) THEN
284             INFO = N + 9
285             RETURN
286          END IF
287       END IF
288 *
289 *     Permute the matrix to make it more nearly triangular
290 *     Workspace layout:  (2*N words -- "work..." not actually used)
291 *        left_permutation, right_permutation, work...
292 *
293       ILEFT = 1
294       IRIGHT = N + 1
295       IWORK = IRIGHT + N
296       CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
297      $             WORK( IRIGHT ), WORK( IWORK ), IINFO )
298       IF( IINFO.NE.0 ) THEN
299          INFO = N + 1
300          GO TO 10
301       END IF
302 *
303 *     Reduce B to triangular form, and initialize VSL and/or VSR
304 *     Workspace layout:  ("work..." must have at least N words)
305 *        left_permutation, right_permutation, tau, work...
306 *
307       IROWS = IHI + 1 - ILO
308       ICOLS = N + 1 - ILO
309       ITAU = IWORK
310       IWORK = ITAU + IROWS
311       CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
312      $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
313       IF( IINFO.GE.0 )
314      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
315       IF( IINFO.NE.0 ) THEN
316          INFO = N + 2
317          GO TO 10
318       END IF
319 *
320       CALL DORMQR( 'L''T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
321      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
322      $             LWORK+1-IWORK, IINFO )
323       IF( IINFO.GE.0 )
324      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
325       IF( IINFO.NE.0 ) THEN
326          INFO = N + 3
327          GO TO 10
328       END IF
329 *
330       IF( ILVSL ) THEN
331          CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
332          CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
333      $                VSL( ILO+1, ILO ), LDVSL )
334          CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
335      $                WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
336      $                IINFO )
337          IF( IINFO.GE.0 )
338      $      LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
339          IF( IINFO.NE.0 ) THEN
340             INFO = N + 4
341             GO TO 10
342          END IF
343       END IF
344 *
345       IF( ILVSR )
346      $   CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
347 *
348 *     Reduce to generalized Hessenberg form
349 *
350       CALL DGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
351      $             LDVSL, VSR, LDVSR, IINFO )
352       IF( IINFO.NE.0 ) THEN
353          INFO = N + 5
354          GO TO 10
355       END IF
356 *
357 *     Perform QZ algorithm, computing Schur vectors if desired
358 *     Workspace layout:  ("work..." must have at least 1 word)
359 *        left_permutation, right_permutation, work...
360 *
361       IWORK = ITAU
362       CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
363      $             ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
364      $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
365       IF( IINFO.GE.0 )
366      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
367       IF( IINFO.NE.0 ) THEN
368          IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
369             INFO = IINFO
370          ELSE IF( IINFO.GT..AND. IINFO.LE.2*N ) THEN
371             INFO = IINFO - N
372          ELSE
373             INFO = N + 6
374          END IF
375          GO TO 10
376       END IF
377 *
378 *     Apply permutation to VSL and VSR
379 *
380       IF( ILVSL ) THEN
381          CALL DGGBAK( 'P''L', N, ILO, IHI, WORK( ILEFT ),
382      $                WORK( IRIGHT ), N, VSL, LDVSL, IINFO )
383          IF( IINFO.NE.0 ) THEN
384             INFO = N + 7
385             GO TO 10
386          END IF
387       END IF
388       IF( ILVSR ) THEN
389          CALL DGGBAK( 'P''R', N, ILO, IHI, WORK( ILEFT ),
390      $                WORK( IRIGHT ), N, VSR, LDVSR, IINFO )
391          IF( IINFO.NE.0 ) THEN
392             INFO = N + 8
393             GO TO 10
394          END IF
395       END IF
396 *
397 *     Undo scaling
398 *
399       IF( ILASCL ) THEN
400          CALL DLASCL( 'H'-1-1, ANRMTO, ANRM, N, N, A, LDA, IINFO )
401          IF( IINFO.NE.0 ) THEN
402             INFO = N + 9
403             RETURN
404          END IF
405          CALL DLASCL( 'G'-1-1, ANRMTO, ANRM, N, 1, ALPHAR, N,
406      $                IINFO )
407          IF( IINFO.NE.0 ) THEN
408             INFO = N + 9
409             RETURN
410          END IF
411          CALL DLASCL( 'G'-1-1, ANRMTO, ANRM, N, 1, ALPHAI, N,
412      $                IINFO )
413          IF( IINFO.NE.0 ) THEN
414             INFO = N + 9
415             RETURN
416          END IF
417       END IF
418 *
419       IF( ILBSCL ) THEN
420          CALL DLASCL( 'U'-1-1, BNRMTO, BNRM, N, N, B, LDB, IINFO )
421          IF( IINFO.NE.0 ) THEN
422             INFO = N + 9
423             RETURN
424          END IF
425          CALL DLASCL( 'G'-1-1, BNRMTO, BNRM, N, 1, BETA, N, IINFO )
426          IF( IINFO.NE.0 ) THEN
427             INFO = N + 9
428             RETURN
429          END IF
430       END IF
431 *
432    10 CONTINUE
433       WORK( 1 ) = LWKOPT
434 *
435       RETURN
436 *
437 *     End of DGEGS
438 *
439       END