1       SUBROUTINE DGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       INTEGER            INFO, LDA, LWORK, M, N
 10 *     ..
 11 *     .. Array Arguments ..
 12       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
 13 *     ..
 14 *
 15 *  Purpose
 16 *  =======
 17 *
 18 *  DGELQF computes an LQ factorization of a real M-by-N matrix A:
 19 *  A = L * Q.
 20 *
 21 *  Arguments
 22 *  =========
 23 *
 24 *  M       (input) INTEGER
 25 *          The number of rows of the matrix A.  M >= 0.
 26 *
 27 *  N       (input) INTEGER
 28 *          The number of columns of the matrix A.  N >= 0.
 29 *
 30 *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
 31 *          On entry, the M-by-N matrix A.
 32 *          On exit, the elements on and below the diagonal of the array
 33 *          contain the m-by-min(m,n) lower trapezoidal matrix L (L is
 34 *          lower triangular if m <= n); the elements above the diagonal,
 35 *          with the array TAU, represent the orthogonal matrix Q as a
 36 *          product of elementary reflectors (see Further Details).
 37 *
 38 *  LDA     (input) INTEGER
 39 *          The leading dimension of the array A.  LDA >= max(1,M).
 40 *
 41 *  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N))
 42 *          The scalar factors of the elementary reflectors (see Further
 43 *          Details).
 44 *
 45 *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 46 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 47 *
 48 *  LWORK   (input) INTEGER
 49 *          The dimension of the array WORK.  LWORK >= max(1,M).
 50 *          For optimum performance LWORK >= M*NB, where NB is the
 51 *          optimal blocksize.
 52 *
 53 *          If LWORK = -1, then a workspace query is assumed; the routine
 54 *          only calculates the optimal size of the WORK array, returns
 55 *          this value as the first entry of the WORK array, and no error
 56 *          message related to LWORK is issued by XERBLA.
 57 *
 58 *  INFO    (output) INTEGER
 59 *          = 0:  successful exit
 60 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 61 *
 62 *  Further Details
 63 *  ===============
 64 *
 65 *  The matrix Q is represented as a product of elementary reflectors
 66 *
 67 *     Q = H(k) . . . H(2) H(1), where k = min(m,n).
 68 *
 69 *  Each H(i) has the form
 70 *
 71 *     H(i) = I - tau * v * v**T
 72 *
 73 *  where tau is a real scalar, and v is a real vector with
 74 *  v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n),
 75 *  and tau in TAU(i).
 76 *
 77 *  =====================================================================
 78 *
 79 *     .. Local Scalars ..
 80       LOGICAL            LQUERY
 81       INTEGER            I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
 82      $                   NBMIN, NX
 83 *     ..
 84 *     .. External Subroutines ..
 85       EXTERNAL           DGELQ2, DLARFB, DLARFT, XERBLA
 86 *     ..
 87 *     .. Intrinsic Functions ..
 88       INTRINSIC          MAXMIN
 89 *     ..
 90 *     .. External Functions ..
 91       INTEGER            ILAENV
 92       EXTERNAL           ILAENV
 93 *     ..
 94 *     .. Executable Statements ..
 95 *
 96 *     Test the input arguments
 97 *
 98       INFO = 0
 99       NB = ILAENV( 1'DGELQF'' ', M, N, -1-1 )
100       LWKOPT = M*NB
101       WORK( 1 ) = LWKOPT
102       LQUERY = ( LWORK.EQ.-1 )
103       IF( M.LT.0 ) THEN
104          INFO = -1
105       ELSE IF( N.LT.0 ) THEN
106          INFO = -2
107       ELSE IF( LDA.LT.MAX1, M ) ) THEN
108          INFO = -4
109       ELSE IF( LWORK.LT.MAX1, M ) .AND. .NOT.LQUERY ) THEN
110          INFO = -7
111       END IF
112       IF( INFO.NE.0 ) THEN
113          CALL XERBLA( 'DGELQF'-INFO )
114          RETURN
115       ELSE IF( LQUERY ) THEN
116          RETURN
117       END IF
118 *
119 *     Quick return if possible
120 *
121       K = MIN( M, N )
122       IF( K.EQ.0 ) THEN
123          WORK( 1 ) = 1
124          RETURN
125       END IF
126 *
127       NBMIN = 2
128       NX = 0
129       IWS = M
130       IF( NB.GT.1 .AND. NB.LT.K ) THEN
131 *
132 *        Determine when to cross over from blocked to unblocked code.
133 *
134          NX = MAX0, ILAENV( 3'DGELQF'' ', M, N, -1-1 ) )
135          IF( NX.LT.K ) THEN
136 *
137 *           Determine if workspace is large enough for blocked code.
138 *
139             LDWORK = M
140             IWS = LDWORK*NB
141             IF( LWORK.LT.IWS ) THEN
142 *
143 *              Not enough workspace to use optimal NB:  reduce NB and
144 *              determine the minimum value of NB.
145 *
146                NB = LWORK / LDWORK
147                NBMIN = MAX2, ILAENV( 2'DGELQF'' ', M, N, -1,
148      $                 -1 ) )
149             END IF
150          END IF
151       END IF
152 *
153       IF( NB.GE.NBMIN .AND. NB.LT..AND. NX.LT.K ) THEN
154 *
155 *        Use blocked code initially
156 *
157          DO 10 I = 1, K - NX, NB
158             IB = MIN( K-I+1, NB )
159 *
160 *           Compute the LQ factorization of the current block
161 *           A(i:i+ib-1,i:n)
162 *
163             CALL DGELQ2( IB, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
164      $                   IINFO )
165             IF( I+IB.LE.M ) THEN
166 *
167 *              Form the triangular factor of the block reflector
168 *              H = H(i) H(i+1) . . . H(i+ib-1)
169 *
170                CALL DLARFT( 'Forward''Rowwise', N-I+1, IB, A( I, I ),
171      $                      LDA, TAU( I ), WORK, LDWORK )
172 *
173 *              Apply H to A(i+ib:m,i:n) from the right
174 *
175                CALL DLARFB( 'Right''No transpose''Forward',
176      $                      'Rowwise', M-I-IB+1, N-I+1, IB, A( I, I ),
177      $                      LDA, WORK, LDWORK, A( I+IB, I ), LDA,
178      $                      WORK( IB+1 ), LDWORK )
179             END IF
180    10    CONTINUE
181       ELSE
182          I = 1
183       END IF
184 *
185 *     Use unblocked code to factor the last or only block.
186 *
187       IF( I.LE.K )
188      $   CALL DGELQ2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
189      $                IINFO )
190 *
191       WORK( 1 ) = IWS
192       RETURN
193 *
194 *     End of DGELQF
195 *
196       END