1       SUBROUTINE DGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
  2      $                   WORK, LWORK, IWORK, INFO )
  3 *
  4 *  -- LAPACK driver routine (version 3.2.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     June 2010
  8 *
  9 *     .. Scalar Arguments ..
 10       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
 11       DOUBLE PRECISION   RCOND
 12 *     ..
 13 *     .. Array Arguments ..
 14       INTEGER            IWORK( * )
 15       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  DGELSD computes the minimum-norm solution to a real linear least
 22 *  squares problem:
 23 *      minimize 2-norm(| b - A*x |)
 24 *  using the singular value decomposition (SVD) of A. A is an M-by-N
 25 *  matrix which may be rank-deficient.
 26 *
 27 *  Several right hand side vectors b and solution vectors x can be
 28 *  handled in a single call; they are stored as the columns of the
 29 *  M-by-NRHS right hand side matrix B and the N-by-NRHS solution
 30 *  matrix X.
 31 *
 32 *  The problem is solved in three steps:
 33 *  (1) Reduce the coefficient matrix A to bidiagonal form with
 34 *      Householder transformations, reducing the original problem
 35 *      into a "bidiagonal least squares problem" (BLS)
 36 *  (2) Solve the BLS using a divide and conquer approach.
 37 *  (3) Apply back all the Householder tranformations to solve
 38 *      the original least squares problem.
 39 *
 40 *  The effective rank of A is determined by treating as zero those
 41 *  singular values which are less than RCOND times the largest singular
 42 *  value.
 43 *
 44 *  The divide and conquer algorithm makes very mild assumptions about
 45 *  floating point arithmetic. It will work on machines with a guard
 46 *  digit in add/subtract, or on those binary machines without guard
 47 *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
 48 *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
 49 *  without guard digits, but we know of none.
 50 *
 51 *  Arguments
 52 *  =========
 53 *
 54 *  M       (input) INTEGER
 55 *          The number of rows of A. M >= 0.
 56 *
 57 *  N       (input) INTEGER
 58 *          The number of columns of A. N >= 0.
 59 *
 60 *  NRHS    (input) INTEGER
 61 *          The number of right hand sides, i.e., the number of columns
 62 *          of the matrices B and X. NRHS >= 0.
 63 *
 64 *  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
 65 *          On entry, the M-by-N matrix A.
 66 *          On exit, A has been destroyed.
 67 *
 68 *  LDA     (input) INTEGER
 69 *          The leading dimension of the array A.  LDA >= max(1,M).
 70 *
 71 *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
 72 *          On entry, the M-by-NRHS right hand side matrix B.
 73 *          On exit, B is overwritten by the N-by-NRHS solution
 74 *          matrix X.  If m >= n and RANK = n, the residual
 75 *          sum-of-squares for the solution in the i-th column is given
 76 *          by the sum of squares of elements n+1:m in that column.
 77 *
 78 *  LDB     (input) INTEGER
 79 *          The leading dimension of the array B. LDB >= max(1,max(M,N)).
 80 *
 81 *  S       (output) DOUBLE PRECISION array, dimension (min(M,N))
 82 *          The singular values of A in decreasing order.
 83 *          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
 84 *
 85 *  RCOND   (input) DOUBLE PRECISION
 86 *          RCOND is used to determine the effective rank of A.
 87 *          Singular values S(i) <= RCOND*S(1) are treated as zero.
 88 *          If RCOND < 0, machine precision is used instead.
 89 *
 90 *  RANK    (output) INTEGER
 91 *          The effective rank of A, i.e., the number of singular values
 92 *          which are greater than RCOND*S(1).
 93 *
 94 *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 95 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 96 *
 97 *  LWORK   (input) INTEGER
 98 *          The dimension of the array WORK. LWORK must be at least 1.
 99 *          The exact minimum amount of workspace needed depends on M,
100 *          N and NRHS. As long as LWORK is at least
101 *              12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2,
102 *          if M is greater than or equal to N or
103 *              12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2,
104 *          if M is less than N, the code will execute correctly.
105 *          SMLSIZ is returned by ILAENV and is equal to the maximum
106 *          size of the subproblems at the bottom of the computation
107 *          tree (usually about 25), and
108 *             NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
109 *          For good performance, LWORK should generally be larger.
110 *
111 *          If LWORK = -1, then a workspace query is assumed; the routine
112 *          only calculates the optimal size of the WORK array, returns
113 *          this value as the first entry of the WORK array, and no error
114 *          message related to LWORK is issued by XERBLA.
115 *
116 *  IWORK   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
117 *          LIWORK >= max(1, 3 * MINMN * NLVL + 11 * MINMN),
118 *          where MINMN = MIN( M,N ).
119 *          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
120 *
121 *  INFO    (output) INTEGER
122 *          = 0:  successful exit
123 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
124 *          > 0:  the algorithm for computing the SVD failed to converge;
125 *                if INFO = i, i off-diagonal elements of an intermediate
126 *                bidiagonal form did not converge to zero.
127 *
128 *  Further Details
129 *  ===============
130 *
131 *  Based on contributions by
132 *     Ming Gu and Ren-Cang Li, Computer Science Division, University of
133 *       California at Berkeley, USA
134 *     Osni Marques, LBNL/NERSC, USA
135 *
136 *  =====================================================================
137 *
138 *     .. Parameters ..
139       DOUBLE PRECISION   ZERO, ONE, TWO
140       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
141 *     ..
142 *     .. Local Scalars ..
143       LOGICAL            LQUERY
144       INTEGER            IASCL, IBSCL, IE, IL, ITAU, ITAUP, ITAUQ,
145      $                   LDWORK, LIWORK, MAXMN, MAXWRK, MINMN, MINWRK,
146      $                   MM, MNTHR, NLVL, NWORK, SMLSIZ, WLALSD
147       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM
148 *     ..
149 *     .. External Subroutines ..
150       EXTERNAL           DGEBRD, DGELQF, DGEQRF, DLABAD, DLACPY, DLALSD,
151      $                   DLASCL, DLASET, DORMBR, DORMLQ, DORMQR, XERBLA
152 *     ..
153 *     .. External Functions ..
154       INTEGER            ILAENV
155       DOUBLE PRECISION   DLAMCH, DLANGE
156       EXTERNAL           ILAENV, DLAMCH, DLANGE
157 *     ..
158 *     .. Intrinsic Functions ..
159       INTRINSIC          DBLEINTLOGMAXMIN
160 *     ..
161 *     .. Executable Statements ..
162 *
163 *     Test the input arguments.
164 *
165       INFO = 0
166       MINMN = MIN( M, N )
167       MAXMN = MAX( M, N )
168       MNTHR = ILAENV( 6'DGELSD'' ', M, N, NRHS, -1 )
169       LQUERY = ( LWORK.EQ.-1 )
170       IF( M.LT.0 ) THEN
171          INFO = -1
172       ELSE IF( N.LT.0 ) THEN
173          INFO = -2
174       ELSE IF( NRHS.LT.0 ) THEN
175          INFO = -3
176       ELSE IF( LDA.LT.MAX1, M ) ) THEN
177          INFO = -5
178       ELSE IF( LDB.LT.MAX1, MAXMN ) ) THEN
179          INFO = -7
180       END IF
181 *
182       SMLSIZ = ILAENV( 9'DGELSD'' '0000 )
183 *
184 *     Compute workspace.
185 *     (Note: Comments in the code beginning "Workspace:" describe the
186 *     minimal amount of workspace needed at that point in the code,
187 *     as well as the preferred amount for good performance.
188 *     NB refers to the optimal block size for the immediately
189 *     following subroutine, as returned by ILAENV.)
190 *
191       MINWRK = 1
192       LIWORK = 1
193       MINMN = MAX1, MINMN )
194       NLVL = MAXINTLOGDBLE( MINMN ) / DBLE( SMLSIZ+1 ) ) /
195      $       LOG( TWO ) ) + 10 )
196 *
197       IF( INFO.EQ.0 ) THEN
198          MAXWRK = 0
199          LIWORK = 3*MINMN*NLVL + 11*MINMN
200          MM = M
201          IF( M.GE..AND. M.GE.MNTHR ) THEN
202 *
203 *           Path 1a - overdetermined, with many more rows than columns.
204 *
205             MM = N
206             MAXWRK = MAX( MAXWRK, N+N*ILAENV( 1'DGEQRF'' ', M, N,
207      $               -1-1 ) )
208             MAXWRK = MAX( MAXWRK, N+NRHS*
209      $               ILAENV( 1'DORMQR''LT', M, NRHS, N, -1 ) )
210          END IF
211          IF( M.GE.N ) THEN
212 *
213 *           Path 1 - overdetermined or exactly determined.
214 *
215             MAXWRK = MAX( MAXWRK, 3*N+( MM+N )*
216      $               ILAENV( 1'DGEBRD'' ', MM, N, -1-1 ) )
217             MAXWRK = MAX( MAXWRK, 3*N+NRHS*
218      $               ILAENV( 1'DORMBR''QLT', MM, NRHS, N, -1 ) )
219             MAXWRK = MAX( MAXWRK, 3*N+( N-1 )*
220      $               ILAENV( 1'DORMBR''PLN', N, NRHS, N, -1 ) )
221             WLALSD = 9*N+2*N*SMLSIZ+8*N*NLVL+N*NRHS+(SMLSIZ+1)**2
222             MAXWRK = MAX( MAXWRK, 3*N+WLALSD )
223             MINWRK = MAX3*N+MM, 3*N+NRHS, 3*N+WLALSD )
224          END IF
225          IF( N.GT.M ) THEN
226             WLALSD = 9*M+2*M*SMLSIZ+8*M*NLVL+M*NRHS+(SMLSIZ+1)**2
227             IF( N.GE.MNTHR ) THEN
228 *
229 *              Path 2a - underdetermined, with many more columns
230 *              than rows.
231 *
232                MAXWRK = M + M*ILAENV( 1'DGELQF'' ', M, N, -1-1 )
233                MAXWRK = MAX( MAXWRK, M*M+4*M+2*M*
234      $                  ILAENV( 1'DGEBRD'' ', M, M, -1-1 ) )
235                MAXWRK = MAX( MAXWRK, M*M+4*M+NRHS*
236      $                  ILAENV( 1'DORMBR''QLT', M, NRHS, M, -1 ) )
237                MAXWRK = MAX( MAXWRK, M*M+4*M+( M-1 )*
238      $                  ILAENV( 1'DORMBR''PLN', M, NRHS, M, -1 ) )
239                IF( NRHS.GT.1 ) THEN
240                   MAXWRK = MAX( MAXWRK, M*M+M+M*NRHS )
241                ELSE
242                   MAXWRK = MAX( MAXWRK, M*M+2*M )
243                END IF
244                MAXWRK = MAX( MAXWRK, M+NRHS*
245      $                  ILAENV( 1'DORMLQ''LT', N, NRHS, M, -1 ) )
246                MAXWRK = MAX( MAXWRK, M*M+4*M+WLALSD )
247 !     XXX: Ensure the Path 2a case below is triggered.  The workspace
248 !     calculation should use queries for all routines eventually.
249                MAXWRK = MAX( MAXWRK,
250      $              4*M+M*M+MAX( M, 2*M-4, NRHS, N-3*M ) )
251             ELSE
252 *
253 *              Path 2 - remaining underdetermined cases.
254 *
255                MAXWRK = 3*+ ( N+M )*ILAENV( 1'DGEBRD'' ', M, N,
256      $                  -1-1 )
257                MAXWRK = MAX( MAXWRK, 3*M+NRHS*
258      $                  ILAENV( 1'DORMBR''QLT', M, NRHS, N, -1 ) )
259                MAXWRK = MAX( MAXWRK, 3*M+M*
260      $                  ILAENV( 1'DORMBR''PLN', N, NRHS, M, -1 ) )
261                MAXWRK = MAX( MAXWRK, 3*M+WLALSD )
262             END IF
263             MINWRK = MAX3*M+NRHS, 3*M+M, 3*M+WLALSD )
264          END IF
265          MINWRK = MIN( MINWRK, MAXWRK )
266          WORK( 1 ) = MAXWRK
267          IWORK( 1 ) = LIWORK
268 
269          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
270             INFO = -12
271          END IF
272       END IF
273 *
274       IF( INFO.NE.0 ) THEN
275          CALL XERBLA( 'DGELSD'-INFO )
276          RETURN
277       ELSE IF( LQUERY ) THEN
278          GO TO 10
279       END IF
280 *
281 *     Quick return if possible.
282 *
283       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
284          RANK = 0
285          RETURN
286       END IF
287 *
288 *     Get machine parameters.
289 *
290       EPS = DLAMCH( 'P' )
291       SFMIN = DLAMCH( 'S' )
292       SMLNUM = SFMIN / EPS
293       BIGNUM = ONE / SMLNUM
294       CALL DLABAD( SMLNUM, BIGNUM )
295 *
296 *     Scale A if max entry outside range [SMLNUM,BIGNUM].
297 *
298       ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
299       IASCL = 0
300       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
301 *
302 *        Scale matrix norm up to SMLNUM.
303 *
304          CALL DLASCL( 'G'00, ANRM, SMLNUM, M, N, A, LDA, INFO )
305          IASCL = 1
306       ELSE IF( ANRM.GT.BIGNUM ) THEN
307 *
308 *        Scale matrix norm down to BIGNUM.
309 *
310          CALL DLASCL( 'G'00, ANRM, BIGNUM, M, N, A, LDA, INFO )
311          IASCL = 2
312       ELSE IF( ANRM.EQ.ZERO ) THEN
313 *
314 *        Matrix all zero. Return zero solution.
315 *
316          CALL DLASET( 'F'MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
317          CALL DLASET( 'F', MINMN, 1, ZERO, ZERO, S, 1 )
318          RANK = 0
319          GO TO 10
320       END IF
321 *
322 *     Scale B if max entry outside range [SMLNUM,BIGNUM].
323 *
324       BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
325       IBSCL = 0
326       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
327 *
328 *        Scale matrix norm up to SMLNUM.
329 *
330          CALL DLASCL( 'G'00, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
331          IBSCL = 1
332       ELSE IF( BNRM.GT.BIGNUM ) THEN
333 *
334 *        Scale matrix norm down to BIGNUM.
335 *
336          CALL DLASCL( 'G'00, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
337          IBSCL = 2
338       END IF
339 *
340 *     If M < N make sure certain entries of B are zero.
341 *
342       IF( M.LT.N )
343      $   CALL DLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+11 ), LDB )
344 *
345 *     Overdetermined case.
346 *
347       IF( M.GE.N ) THEN
348 *
349 *        Path 1 - overdetermined or exactly determined.
350 *
351          MM = M
352          IF( M.GE.MNTHR ) THEN
353 *
354 *           Path 1a - overdetermined, with many more rows than columns.
355 *
356             MM = N
357             ITAU = 1
358             NWORK = ITAU + N
359 *
360 *           Compute A=Q*R.
361 *           (Workspace: need 2*N, prefer N+N*NB)
362 *
363             CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
364      $                   LWORK-NWORK+1, INFO )
365 *
366 *           Multiply B by transpose(Q).
367 *           (Workspace: need N+NRHS, prefer N+NRHS*NB)
368 *
369             CALL DORMQR( 'L''T', M, NRHS, N, A, LDA, WORK( ITAU ), B,
370      $                   LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
371 *
372 *           Zero out below R.
373 *
374             IF( N.GT.1 ) THEN
375                CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, A( 21 ), LDA )
376             END IF
377          END IF
378 *
379          IE = 1
380          ITAUQ = IE + N
381          ITAUP = ITAUQ + N
382          NWORK = ITAUP + N
383 *
384 *        Bidiagonalize R in A.
385 *        (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB)
386 *
387          CALL DGEBRD( MM, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
388      $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
389      $                INFO )
390 *
391 *        Multiply B by transpose of left bidiagonalizing vectors of R.
392 *        (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB)
393 *
394          CALL DORMBR( 'Q''L''T', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
395      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
396 *
397 *        Solve the bidiagonal least squares problem.
398 *
399          CALL DLALSD( 'U', SMLSIZ, N, NRHS, S, WORK( IE ), B, LDB,
400      $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
401          IF( INFO.NE.0 ) THEN
402             GO TO 10
403          END IF
404 *
405 *        Multiply B by right bidiagonalizing vectors of R.
406 *
407          CALL DORMBR( 'P''L''N', N, NRHS, N, A, LDA, WORK( ITAUP ),
408      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
409 *
410       ELSE IF( N.GE.MNTHR .AND. LWORK.GE.4*M+M*M+
411      $         MAX( M, 2*M-4, NRHS, N-3*M, WLALSD ) ) THEN
412 *
413 *        Path 2a - underdetermined, with many more columns than rows
414 *        and sufficient workspace for an efficient algorithm.
415 *
416          LDWORK = M
417          IF( LWORK.GE.MAX4*M+M*LDA+MAX( M, 2*M-4, NRHS, N-3*M ),
418      $       M*LDA+M+M*NRHS, 4*M+M*LDA+WLALSD ) )LDWORK = LDA
419          ITAU = 1
420          NWORK = M + 1
421 *
422 *        Compute A=L*Q.
423 *        (Workspace: need 2*M, prefer M+M*NB)
424 *
425          CALL DGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
426      $                LWORK-NWORK+1, INFO )
427          IL = NWORK
428 *
429 *        Copy L to WORK(IL), zeroing out above its diagonal.
430 *
431          CALL DLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
432          CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, WORK( IL+LDWORK ),
433      $                LDWORK )
434          IE = IL + LDWORK*M
435          ITAUQ = IE + M
436          ITAUP = ITAUQ + M
437          NWORK = ITAUP + M
438 *
439 *        Bidiagonalize L in WORK(IL).
440 *        (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB)
441 *
442          CALL DGEBRD( M, M, WORK( IL ), LDWORK, S, WORK( IE ),
443      $                WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
444      $                LWORK-NWORK+1, INFO )
445 *
446 *        Multiply B by transpose of left bidiagonalizing vectors of L.
447 *        (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
448 *
449          CALL DORMBR( 'Q''L''T', M, NRHS, M, WORK( IL ), LDWORK,
450      $                WORK( ITAUQ ), B, LDB, WORK( NWORK ),
451      $                LWORK-NWORK+1, INFO )
452 *
453 *        Solve the bidiagonal least squares problem.
454 *
455          CALL DLALSD( 'U', SMLSIZ, M, NRHS, S, WORK( IE ), B, LDB,
456      $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
457          IF( INFO.NE.0 ) THEN
458             GO TO 10
459          END IF
460 *
461 *        Multiply B by right bidiagonalizing vectors of L.
462 *
463          CALL DORMBR( 'P''L''N', M, NRHS, M, WORK( IL ), LDWORK,
464      $                WORK( ITAUP ), B, LDB, WORK( NWORK ),
465      $                LWORK-NWORK+1, INFO )
466 *
467 *        Zero out below first M rows of B.
468 *
469          CALL DLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+11 ), LDB )
470          NWORK = ITAU + M
471 *
472 *        Multiply transpose(Q) by B.
473 *        (Workspace: need M+NRHS, prefer M+NRHS*NB)
474 *
475          CALL DORMLQ( 'L''T', N, NRHS, M, A, LDA, WORK( ITAU ), B,
476      $                LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
477 *
478       ELSE
479 *
480 *        Path 2 - remaining underdetermined cases.
481 *
482          IE = 1
483          ITAUQ = IE + M
484          ITAUP = ITAUQ + M
485          NWORK = ITAUP + M
486 *
487 *        Bidiagonalize A.
488 *        (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
489 *
490          CALL DGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
491      $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
492      $                INFO )
493 *
494 *        Multiply B by transpose of left bidiagonalizing vectors.
495 *        (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB)
496 *
497          CALL DORMBR( 'Q''L''T', M, NRHS, N, A, LDA, WORK( ITAUQ ),
498      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
499 *
500 *        Solve the bidiagonal least squares problem.
501 *
502          CALL DLALSD( 'L', SMLSIZ, M, NRHS, S, WORK( IE ), B, LDB,
503      $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
504          IF( INFO.NE.0 ) THEN
505             GO TO 10
506          END IF
507 *
508 *        Multiply B by right bidiagonalizing vectors of A.
509 *
510          CALL DORMBR( 'P''L''N', N, NRHS, M, A, LDA, WORK( ITAUP ),
511      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
512 *
513       END IF
514 *
515 *     Undo scaling.
516 *
517       IF( IASCL.EQ.1 ) THEN
518          CALL DLASCL( 'G'00, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
519          CALL DLASCL( 'G'00, SMLNUM, ANRM, MINMN, 1, S, MINMN,
520      $                INFO )
521       ELSE IF( IASCL.EQ.2 ) THEN
522          CALL DLASCL( 'G'00, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
523          CALL DLASCL( 'G'00, BIGNUM, ANRM, MINMN, 1, S, MINMN,
524      $                INFO )
525       END IF
526       IF( IBSCL.EQ.1 ) THEN
527          CALL DLASCL( 'G'00, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
528       ELSE IF( IBSCL.EQ.2 ) THEN
529          CALL DLASCL( 'G'00, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
530       END IF
531 *
532    10 CONTINUE
533       WORK( 1 ) = MAXWRK
534       IWORK( 1 ) = LIWORK
535       RETURN
536 *
537 *     End of DGELSD
538 *
539       END