1       SUBROUTINE DGEQLF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       INTEGER            INFO, LDA, LWORK, M, N
 10 *     ..
 11 *     .. Array Arguments ..
 12       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
 13 *     ..
 14 *
 15 *  Purpose
 16 *  =======
 17 *
 18 *  DGEQLF computes a QL factorization of a real M-by-N matrix A:
 19 *  A = Q * L.
 20 *
 21 *  Arguments
 22 *  =========
 23 *
 24 *  M       (input) INTEGER
 25 *          The number of rows of the matrix A.  M >= 0.
 26 *
 27 *  N       (input) INTEGER
 28 *          The number of columns of the matrix A.  N >= 0.
 29 *
 30 *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
 31 *          On entry, the M-by-N matrix A.
 32 *          On exit,
 33 *          if m >= n, the lower triangle of the subarray
 34 *          A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L;
 35 *          if m <= n, the elements on and below the (n-m)-th
 36 *          superdiagonal contain the M-by-N lower trapezoidal matrix L;
 37 *          the remaining elements, with the array TAU, represent the
 38 *          orthogonal matrix Q as a product of elementary reflectors
 39 *          (see Further Details).
 40 *
 41 *  LDA     (input) INTEGER
 42 *          The leading dimension of the array A.  LDA >= max(1,M).
 43 *
 44 *  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N))
 45 *          The scalar factors of the elementary reflectors (see Further
 46 *          Details).
 47 *
 48 *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 49 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 50 *
 51 *  LWORK   (input) INTEGER
 52 *          The dimension of the array WORK.  LWORK >= max(1,N).
 53 *          For optimum performance LWORK >= N*NB, where NB is the
 54 *          optimal blocksize.
 55 *
 56 *          If LWORK = -1, then a workspace query is assumed; the routine
 57 *          only calculates the optimal size of the WORK array, returns
 58 *          this value as the first entry of the WORK array, and no error
 59 *          message related to LWORK is issued by XERBLA.
 60 *
 61 *  INFO    (output) INTEGER
 62 *          = 0:  successful exit
 63 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 64 *
 65 *  Further Details
 66 *  ===============
 67 *
 68 *  The matrix Q is represented as a product of elementary reflectors
 69 *
 70 *     Q = H(k) . . . H(2) H(1), where k = min(m,n).
 71 *
 72 *  Each H(i) has the form
 73 *
 74 *     H(i) = I - tau * v * v**T
 75 *
 76 *  where tau is a real scalar, and v is a real vector with
 77 *  v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
 78 *  A(1:m-k+i-1,n-k+i), and tau in TAU(i).
 79 *
 80 *  =====================================================================
 81 *
 82 *     .. Local Scalars ..
 83       LOGICAL            LQUERY
 84       INTEGER            I, IB, IINFO, IWS, K, KI, KK, LDWORK, LWKOPT,
 85      $                   MU, NB, NBMIN, NU, NX
 86 *     ..
 87 *     .. External Subroutines ..
 88       EXTERNAL           DGEQL2, DLARFB, DLARFT, XERBLA
 89 *     ..
 90 *     .. Intrinsic Functions ..
 91       INTRINSIC          MAXMIN
 92 *     ..
 93 *     .. External Functions ..
 94       INTEGER            ILAENV
 95       EXTERNAL           ILAENV
 96 *     ..
 97 *     .. Executable Statements ..
 98 *
 99 *     Test the input arguments
100 *
101       INFO = 0
102       LQUERY = ( LWORK.EQ.-1 )
103       IF( M.LT.0 ) THEN
104          INFO = -1
105       ELSE IF( N.LT.0 ) THEN
106          INFO = -2
107       ELSE IF( LDA.LT.MAX1, M ) ) THEN
108          INFO = -4
109       END IF
110 *
111       IF( INFO.EQ.0 ) THEN
112          K = MIN( M, N )
113          IF( K.EQ.0 ) THEN
114             LWKOPT = 1
115          ELSE
116             NB = ILAENV( 1'DGEQLF'' ', M, N, -1-1 )
117             LWKOPT = N*NB
118          END IF
119          WORK( 1 ) = LWKOPT
120 *
121          IF( LWORK.LT.MAX1, N ) .AND. .NOT.LQUERY ) THEN
122             INFO = -7
123          END IF
124       END IF
125 *
126       IF( INFO.NE.0 ) THEN
127          CALL XERBLA( 'DGEQLF'-INFO )
128          RETURN
129       ELSE IF( LQUERY ) THEN
130          RETURN
131       END IF
132 *
133 *     Quick return if possible
134 *
135       IF( K.EQ.0 ) THEN
136          RETURN
137       END IF
138 *
139       NBMIN = 2
140       NX = 1
141       IWS = N
142       IF( NB.GT.1 .AND. NB.LT.K ) THEN
143 *
144 *        Determine when to cross over from blocked to unblocked code.
145 *
146          NX = MAX0, ILAENV( 3'DGEQLF'' ', M, N, -1-1 ) )
147          IF( NX.LT.K ) THEN
148 *
149 *           Determine if workspace is large enough for blocked code.
150 *
151             LDWORK = N
152             IWS = LDWORK*NB
153             IF( LWORK.LT.IWS ) THEN
154 *
155 *              Not enough workspace to use optimal NB:  reduce NB and
156 *              determine the minimum value of NB.
157 *
158                NB = LWORK / LDWORK
159                NBMIN = MAX2, ILAENV( 2'DGEQLF'' ', M, N, -1,
160      $                 -1 ) )
161             END IF
162          END IF
163       END IF
164 *
165       IF( NB.GE.NBMIN .AND. NB.LT..AND. NX.LT.K ) THEN
166 *
167 *        Use blocked code initially.
168 *        The last kk columns are handled by the block method.
169 *
170          KI = ( ( K-NX-1 ) / NB )*NB
171          KK = MIN( K, KI+NB )
172 *
173          DO 10 I = K - KK + KI + 1, K - KK + 1-NB
174             IB = MIN( K-I+1, NB )
175 *
176 *           Compute the QL factorization of the current block
177 *           A(1:m-k+i+ib-1,n-k+i:n-k+i+ib-1)
178 *
179             CALL DGEQL2( M-K+I+IB-1, IB, A( 1, N-K+I ), LDA, TAU( I ),
180      $                   WORK, IINFO )
181             IF( N-K+I.GT.1 ) THEN
182 *
183 *              Form the triangular factor of the block reflector
184 *              H = H(i+ib-1) . . . H(i+1) H(i)
185 *
186                CALL DLARFT( 'Backward''Columnwise', M-K+I+IB-1, IB,
187      $                      A( 1, N-K+I ), LDA, TAU( I ), WORK, LDWORK )
188 *
189 *              Apply H**T to A(1:m-k+i+ib-1,1:n-k+i-1) from the left
190 *
191                CALL DLARFB( 'Left''Transpose''Backward',
192      $                      'Columnwise', M-K+I+IB-1, N-K+I-1, IB,
193      $                      A( 1, N-K+I ), LDA, WORK, LDWORK, A, LDA,
194      $                      WORK( IB+1 ), LDWORK )
195             END IF
196    10    CONTINUE
197          MU = M - K + I + NB - 1
198          NU = N - K + I + NB - 1
199       ELSE
200          MU = M
201          NU = N
202       END IF
203 *
204 *     Use unblocked code to factor the last or only block
205 *
206       IF( MU.GT.0 .AND. NU.GT.0 )
207      $   CALL DGEQL2( MU, NU, A, LDA, TAU, WORK, IINFO )
208 *
209       WORK( 1 ) = IWS
210       RETURN
211 *
212 *     End of DGEQLF
213 *
214       END