1       SUBROUTINE DGEQPF( M, N, A, LDA, JPVT, TAU, WORK, INFO )
  2 *
  3 *  -- LAPACK deprecated computational routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       INTEGER            INFO, LDA, M, N
 10 *     ..
 11 *     .. Array Arguments ..
 12       INTEGER            JPVT( * )
 13       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  This routine is deprecated and has been replaced by routine DGEQP3.
 20 *
 21 *  DGEQPF computes a QR factorization with column pivoting of a
 22 *  real M-by-N matrix A: A*P = Q*R.
 23 *
 24 *  Arguments
 25 *  =========
 26 *
 27 *  M       (input) INTEGER
 28 *          The number of rows of the matrix A. M >= 0.
 29 *
 30 *  N       (input) INTEGER
 31 *          The number of columns of the matrix A. N >= 0
 32 *
 33 *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
 34 *          On entry, the M-by-N matrix A.
 35 *          On exit, the upper triangle of the array contains the
 36 *          min(M,N)-by-N upper triangular matrix R; the elements
 37 *          below the diagonal, together with the array TAU,
 38 *          represent the orthogonal matrix Q as a product of
 39 *          min(m,n) elementary reflectors.
 40 *
 41 *  LDA     (input) INTEGER
 42 *          The leading dimension of the array A. LDA >= max(1,M).
 43 *
 44 *  JPVT    (input/output) INTEGER array, dimension (N)
 45 *          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
 46 *          to the front of A*P (a leading column); if JPVT(i) = 0,
 47 *          the i-th column of A is a free column.
 48 *          On exit, if JPVT(i) = k, then the i-th column of A*P
 49 *          was the k-th column of A.
 50 *
 51 *  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N))
 52 *          The scalar factors of the elementary reflectors.
 53 *
 54 *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
 55 *
 56 *  INFO    (output) INTEGER
 57 *          = 0:  successful exit
 58 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 59 *
 60 *  Further Details
 61 *  ===============
 62 *
 63 *  The matrix Q is represented as a product of elementary reflectors
 64 *
 65 *     Q = H(1) H(2) . . . H(n)
 66 *
 67 *  Each H(i) has the form
 68 *
 69 *     H = I - tau * v * v**T
 70 *
 71 *  where tau is a real scalar, and v is a real vector with
 72 *  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i).
 73 *
 74 *  The matrix P is represented in jpvt as follows: If
 75 *     jpvt(j) = i
 76 *  then the jth column of P is the ith canonical unit vector.
 77 *
 78 *  Partial column norm updating strategy modified by
 79 *    Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
 80 *    University of Zagreb, Croatia.
 81 *  -- April 2011                                                      --
 82 *  For more details see LAPACK Working Note 176.
 83 *
 84 *  =====================================================================
 85 *
 86 *     .. Parameters ..
 87       DOUBLE PRECISION   ZERO, ONE
 88       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 89 *     ..
 90 *     .. Local Scalars ..
 91       INTEGER            I, ITEMP, J, MA, MN, PVT
 92       DOUBLE PRECISION   AII, TEMP, TEMP2, TOL3Z
 93 *     ..
 94 *     .. External Subroutines ..
 95       EXTERNAL           DGEQR2, DLARF, DLARFG, DORM2R, DSWAP, XERBLA
 96 *     ..
 97 *     .. Intrinsic Functions ..
 98       INTRINSIC          ABSMAXMINSQRT
 99 *     ..
100 *     .. External Functions ..
101       INTEGER            IDAMAX
102       DOUBLE PRECISION   DLAMCH, DNRM2
103       EXTERNAL           IDAMAX, DLAMCH, DNRM2
104 *     ..
105 *     .. Executable Statements ..
106 *
107 *     Test the input arguments
108 *
109       INFO = 0
110       IF( M.LT.0 ) THEN
111          INFO = -1
112       ELSE IF( N.LT.0 ) THEN
113          INFO = -2
114       ELSE IF( LDA.LT.MAX1, M ) ) THEN
115          INFO = -4
116       END IF
117       IF( INFO.NE.0 ) THEN
118          CALL XERBLA( 'DGEQPF'-INFO )
119          RETURN
120       END IF
121 *
122       MN = MIN( M, N )
123       TOL3Z = SQRT(DLAMCH('Epsilon'))
124 *
125 *     Move initial columns up front
126 *
127       ITEMP = 1
128       DO 10 I = 1, N
129          IF( JPVT( I ).NE.0 ) THEN
130             IF( I.NE.ITEMP ) THEN
131                CALL DSWAP( M, A( 1, I ), 1, A( 1, ITEMP ), 1 )
132                JPVT( I ) = JPVT( ITEMP )
133                JPVT( ITEMP ) = I
134             ELSE
135                JPVT( I ) = I
136             END IF
137             ITEMP = ITEMP + 1
138          ELSE
139             JPVT( I ) = I
140          END IF
141    10 CONTINUE
142       ITEMP = ITEMP - 1
143 *
144 *     Compute the QR factorization and update remaining columns
145 *
146       IF( ITEMP.GT.0 ) THEN
147          MA = MIN( ITEMP, M )
148          CALL DGEQR2( M, MA, A, LDA, TAU, WORK, INFO )
149          IF( MA.LT.N ) THEN
150             CALL DORM2R( 'Left''Transpose', M, N-MA, MA, A, LDA, TAU,
151      $                   A( 1, MA+1 ), LDA, WORK, INFO )
152          END IF
153       END IF
154 *
155       IF( ITEMP.LT.MN ) THEN
156 *
157 *        Initialize partial column norms. The first n elements of
158 *        work store the exact column norms.
159 *
160          DO 20 I = ITEMP + 1, N
161             WORK( I ) = DNRM2( M-ITEMP, A( ITEMP+1, I ), 1 )
162             WORK( N+I ) = WORK( I )
163    20    CONTINUE
164 *
165 *        Compute factorization
166 *
167          DO 40 I = ITEMP + 1, MN
168 *
169 *           Determine ith pivot column and swap if necessary
170 *
171             PVT = ( I-1 ) + IDAMAX( N-I+1, WORK( I ), 1 )
172 *
173             IF( PVT.NE.I ) THEN
174                CALL DSWAP( M, A( 1, PVT ), 1, A( 1, I ), 1 )
175                ITEMP = JPVT( PVT )
176                JPVT( PVT ) = JPVT( I )
177                JPVT( I ) = ITEMP
178                WORK( PVT ) = WORK( I )
179                WORK( N+PVT ) = WORK( N+I )
180             END IF
181 *
182 *           Generate elementary reflector H(i)
183 *
184             IF( I.LT.M ) THEN
185                CALL DLARFG( M-I+1, A( I, I ), A( I+1, I ), 1, TAU( I ) )
186             ELSE
187                CALL DLARFG( 1, A( M, M ), A( M, M ), 1, TAU( M ) )
188             END IF
189 *
190             IF( I.LT.N ) THEN
191 *
192 *              Apply H(i) to A(i:m,i+1:n) from the left
193 *
194                AII = A( I, I )
195                A( I, I ) = ONE
196                CALL DLARF( 'LEFT', M-I+1, N-I, A( I, I ), 1, TAU( I ),
197      $                     A( I, I+1 ), LDA, WORK( 2*N+1 ) )
198                A( I, I ) = AII
199             END IF
200 *
201 *           Update partial column norms
202 *
203             DO 30 J = I + 1, N
204                IF( WORK( J ).NE.ZERO ) THEN
205 *
206 *                 NOTE: The following 4 lines follow from the analysis in
207 *                 Lapack Working Note 176.
208 *                 
209                   TEMP = ABS( A( I, J ) ) / WORK( J )
210                   TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) )
211                   TEMP2 = TEMP*( WORK( J ) / WORK( N+J ) )**2
212                   IF( TEMP2 .LE. TOL3Z ) THEN 
213                      IF( M-I.GT.0 ) THEN
214                         WORK( J ) = DNRM2( M-I, A( I+1, J ), 1 )
215                         WORK( N+J ) = WORK( J )
216                      ELSE
217                         WORK( J ) = ZERO
218                         WORK( N+J ) = ZERO
219                      END IF
220                   ELSE
221                      WORK( J ) = WORK( J )*SQRT( TEMP )
222                   END IF
223                END IF
224    30       CONTINUE
225 *
226    40    CONTINUE
227       END IF
228       RETURN
229 *
230 *     End of DGEQPF
231 *
232       END