1       SUBROUTINE DGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       INTEGER            INFO, LDA, LWORK, M, N
 10 *     ..
 11 *     .. Array Arguments ..
 12       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
 13 *     ..
 14 *
 15 *  Purpose
 16 *  =======
 17 *
 18 *  DGEQRFP computes a QR factorization of a real M-by-N matrix A:
 19 *  A = Q * R.
 20 *
 21 *  Arguments
 22 *  =========
 23 *
 24 *  M       (input) INTEGER
 25 *          The number of rows of the matrix A.  M >= 0.
 26 *
 27 *  N       (input) INTEGER
 28 *          The number of columns of the matrix A.  N >= 0.
 29 *
 30 *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
 31 *          On entry, the M-by-N matrix A.
 32 *          On exit, the elements on and above the diagonal of the array
 33 *          contain the min(M,N)-by-N upper trapezoidal matrix R (R is
 34 *          upper triangular if m >= n); the elements below the diagonal,
 35 *          with the array TAU, represent the orthogonal matrix Q as a
 36 *          product of min(m,n) elementary reflectors (see Further
 37 *          Details).
 38 *
 39 *  LDA     (input) INTEGER
 40 *          The leading dimension of the array A.  LDA >= max(1,M).
 41 *
 42 *  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N))
 43 *          The scalar factors of the elementary reflectors (see Further
 44 *          Details).
 45 *
 46 *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 47 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 48 *
 49 *  LWORK   (input) INTEGER
 50 *          The dimension of the array WORK.  LWORK >= max(1,N).
 51 *          For optimum performance LWORK >= N*NB, where NB is
 52 *          the optimal blocksize.
 53 *
 54 *          If LWORK = -1, then a workspace query is assumed; the routine
 55 *          only calculates the optimal size of the WORK array, returns
 56 *          this value as the first entry of the WORK array, and no error
 57 *          message related to LWORK is issued by XERBLA.
 58 *
 59 *  INFO    (output) INTEGER
 60 *          = 0:  successful exit
 61 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 62 *
 63 *  Further Details
 64 *  ===============
 65 *
 66 *  The matrix Q is represented as a product of elementary reflectors
 67 *
 68 *     Q = H(1) H(2) . . . H(k), where k = min(m,n).
 69 *
 70 *  Each H(i) has the form
 71 *
 72 *     H(i) = I - tau * v * v**T
 73 *
 74 *  where tau is a real scalar, and v is a real vector with
 75 *  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
 76 *  and tau in TAU(i).
 77 *
 78 *  =====================================================================
 79 *
 80 *     .. Local Scalars ..
 81       LOGICAL            LQUERY
 82       INTEGER            I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
 83      $                   NBMIN, NX
 84 *     ..
 85 *     .. External Subroutines ..
 86       EXTERNAL           DGEQR2P, DLARFB, DLARFT, XERBLA
 87 *     ..
 88 *     .. Intrinsic Functions ..
 89       INTRINSIC          MAXMIN
 90 *     ..
 91 *     .. External Functions ..
 92       INTEGER            ILAENV
 93       EXTERNAL           ILAENV
 94 *     ..
 95 *     .. Executable Statements ..
 96 *
 97 *     Test the input arguments
 98 *
 99       INFO = 0
100       NB = ILAENV( 1'DGEQRF'' ', M, N, -1-1 )
101       LWKOPT = N*NB
102       WORK( 1 ) = LWKOPT
103       LQUERY = ( LWORK.EQ.-1 )
104       IF( M.LT.0 ) THEN
105          INFO = -1
106       ELSE IF( N.LT.0 ) THEN
107          INFO = -2
108       ELSE IF( LDA.LT.MAX1, M ) ) THEN
109          INFO = -4
110       ELSE IF( LWORK.LT.MAX1, N ) .AND. .NOT.LQUERY ) THEN
111          INFO = -7
112       END IF
113       IF( INFO.NE.0 ) THEN
114          CALL XERBLA( 'DGEQRFP'-INFO )
115          RETURN
116       ELSE IF( LQUERY ) THEN
117          RETURN
118       END IF
119 *
120 *     Quick return if possible
121 *
122       K = MIN( M, N )
123       IF( K.EQ.0 ) THEN
124          WORK( 1 ) = 1
125          RETURN
126       END IF
127 *
128       NBMIN = 2
129       NX = 0
130       IWS = N
131       IF( NB.GT.1 .AND. NB.LT.K ) THEN
132 *
133 *        Determine when to cross over from blocked to unblocked code.
134 *
135          NX = MAX0, ILAENV( 3'DGEQRF'' ', M, N, -1-1 ) )
136          IF( NX.LT.K ) THEN
137 *
138 *           Determine if workspace is large enough for blocked code.
139 *
140             LDWORK = N
141             IWS = LDWORK*NB
142             IF( LWORK.LT.IWS ) THEN
143 *
144 *              Not enough workspace to use optimal NB:  reduce NB and
145 *              determine the minimum value of NB.
146 *
147                NB = LWORK / LDWORK
148                NBMIN = MAX2, ILAENV( 2'DGEQRF'' ', M, N, -1,
149      $                 -1 ) )
150             END IF
151          END IF
152       END IF
153 *
154       IF( NB.GE.NBMIN .AND. NB.LT..AND. NX.LT.K ) THEN
155 *
156 *        Use blocked code initially
157 *
158          DO 10 I = 1, K - NX, NB
159             IB = MIN( K-I+1, NB )
160 *
161 *           Compute the QR factorization of the current block
162 *           A(i:m,i:i+ib-1)
163 *
164             CALL DGEQR2P( M-I+1, IB, A( I, I ), LDA, TAU( I ), WORK,
165      $                   IINFO )
166             IF( I+IB.LE.N ) THEN
167 *
168 *              Form the triangular factor of the block reflector
169 *              H = H(i) H(i+1) . . . H(i+ib-1)
170 *
171                CALL DLARFT( 'Forward''Columnwise', M-I+1, IB,
172      $                      A( I, I ), LDA, TAU( I ), WORK, LDWORK )
173 *
174 *              Apply H**T to A(i:m,i+ib:n) from the left
175 *
176                CALL DLARFB( 'Left''Transpose''Forward',
177      $                      'Columnwise', M-I+1, N-I-IB+1, IB,
178      $                      A( I, I ), LDA, WORK, LDWORK, A( I, I+IB ),
179      $                      LDA, WORK( IB+1 ), LDWORK )
180             END IF
181    10    CONTINUE
182       ELSE
183          I = 1
184       END IF
185 *
186 *     Use unblocked code to factor the last or only block.
187 *
188       IF( I.LE.K )
189      $   CALL DGEQR2P( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
190      $                IINFO )
191 *
192       WORK( 1 ) = IWS
193       RETURN
194 *
195 *     End of DGEQRFP
196 *
197       END