1       SUBROUTINE DGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE,
  2      $                   RSCALE, WORK, INFO )
  3 *
  4 *  -- LAPACK routine (version 3.2.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     June 2010
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          JOB
 11       INTEGER            IHI, ILO, INFO, LDA, LDB, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), LSCALE( * ),
 15      $                   RSCALE( * ), WORK( * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  DGGBAL balances a pair of general real matrices (A,B).  This
 22 *  involves, first, permuting A and B by similarity transformations to
 23 *  isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N
 24 *  elements on the diagonal; and second, applying a diagonal similarity
 25 *  transformation to rows and columns ILO to IHI to make the rows
 26 *  and columns as close in norm as possible. Both steps are optional.
 27 *
 28 *  Balancing may reduce the 1-norm of the matrices, and improve the
 29 *  accuracy of the computed eigenvalues and/or eigenvectors in the
 30 *  generalized eigenvalue problem A*x = lambda*B*x.
 31 *
 32 *  Arguments
 33 *  =========
 34 *
 35 *  JOB     (input) CHARACTER*1
 36 *          Specifies the operations to be performed on A and B:
 37 *          = 'N':  none:  simply set ILO = 1, IHI = N, LSCALE(I) = 1.0
 38 *                  and RSCALE(I) = 1.0 for i = 1,...,N.
 39 *          = 'P':  permute only;
 40 *          = 'S':  scale only;
 41 *          = 'B':  both permute and scale.
 42 *
 43 *  N       (input) INTEGER
 44 *          The order of the matrices A and B.  N >= 0.
 45 *
 46 *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
 47 *          On entry, the input matrix A.
 48 *          On exit,  A is overwritten by the balanced matrix.
 49 *          If JOB = 'N', A is not referenced.
 50 *
 51 *  LDA     (input) INTEGER
 52 *          The leading dimension of the array A. LDA >= max(1,N).
 53 *
 54 *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,N)
 55 *          On entry, the input matrix B.
 56 *          On exit,  B is overwritten by the balanced matrix.
 57 *          If JOB = 'N', B is not referenced.
 58 *
 59 *  LDB     (input) INTEGER
 60 *          The leading dimension of the array B. LDB >= max(1,N).
 61 *
 62 *  ILO     (output) INTEGER
 63 *  IHI     (output) INTEGER
 64 *          ILO and IHI are set to integers such that on exit
 65 *          A(i,j) = 0 and B(i,j) = 0 if i > j and
 66 *          j = 1,...,ILO-1 or i = IHI+1,...,N.
 67 *          If JOB = 'N' or 'S', ILO = 1 and IHI = N.
 68 *
 69 *  LSCALE  (output) DOUBLE PRECISION array, dimension (N)
 70 *          Details of the permutations and scaling factors applied
 71 *          to the left side of A and B.  If P(j) is the index of the
 72 *          row interchanged with row j, and D(j)
 73 *          is the scaling factor applied to row j, then
 74 *            LSCALE(j) = P(j)    for J = 1,...,ILO-1
 75 *                      = D(j)    for J = ILO,...,IHI
 76 *                      = P(j)    for J = IHI+1,...,N.
 77 *          The order in which the interchanges are made is N to IHI+1,
 78 *          then 1 to ILO-1.
 79 *
 80 *  RSCALE  (output) DOUBLE PRECISION array, dimension (N)
 81 *          Details of the permutations and scaling factors applied
 82 *          to the right side of A and B.  If P(j) is the index of the
 83 *          column interchanged with column j, and D(j)
 84 *          is the scaling factor applied to column j, then
 85 *            LSCALE(j) = P(j)    for J = 1,...,ILO-1
 86 *                      = D(j)    for J = ILO,...,IHI
 87 *                      = P(j)    for J = IHI+1,...,N.
 88 *          The order in which the interchanges are made is N to IHI+1,
 89 *          then 1 to ILO-1.
 90 *
 91 *  WORK    (workspace) DOUBLE PRECISION array, dimension (lwork)
 92 *          lwork must be at least max(1,6*N) when JOB = 'S' or 'B', and
 93 *          at least 1 when JOB = 'N' or 'P'.
 94 *
 95 *  INFO    (output) INTEGER
 96 *          = 0:  successful exit
 97 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
 98 *
 99 *  Further Details
100 *  ===============
101 *
102 *  See R.C. WARD, Balancing the generalized eigenvalue problem,
103 *                 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
104 *
105 *  =====================================================================
106 *
107 *     .. Parameters ..
108       DOUBLE PRECISION   ZERO, HALF, ONE
109       PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
110       DOUBLE PRECISION   THREE, SCLFAC
111       PARAMETER          ( THREE = 3.0D+0, SCLFAC = 1.0D+1 )
112 *     ..
113 *     .. Local Scalars ..
114       INTEGER            I, ICAB, IFLOW, IP1, IR, IRAB, IT, J, JC, JP1,
115      $                   K, KOUNT, L, LCAB, LM1, LRAB, LSFMAX, LSFMIN,
116      $                   M, NR, NRP2
117       DOUBLE PRECISION   ALPHA, BASL, BETA, CAB, CMAX, COEF, COEF2,
118      $                   COEF5, COR, EW, EWC, GAMMA, PGAMMA, RAB, SFMAX,
119      $                   SFMIN, SUM, T, TA, TB, TC
120 *     ..
121 *     .. External Functions ..
122       LOGICAL            LSAME
123       INTEGER            IDAMAX
124       DOUBLE PRECISION   DDOT, DLAMCH
125       EXTERNAL           LSAME, IDAMAX, DDOT, DLAMCH
126 *     ..
127 *     .. External Subroutines ..
128       EXTERNAL           DAXPY, DSCAL, DSWAP, XERBLA
129 *     ..
130 *     .. Intrinsic Functions ..
131       INTRINSIC          ABSDBLEINTLOG10MAXMINSIGN
132 *     ..
133 *     .. Executable Statements ..
134 *
135 *     Test the input parameters
136 *
137       INFO = 0
138       IF.NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
139      $    .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
140          INFO = -1
141       ELSE IF( N.LT.0 ) THEN
142          INFO = -2
143       ELSE IF( LDA.LT.MAX1, N ) ) THEN
144          INFO = -4
145       ELSE IF( LDB.LT.MAX1, N ) ) THEN
146          INFO = -6
147       END IF
148       IF( INFO.NE.0 ) THEN
149          CALL XERBLA( 'DGGBAL'-INFO )
150          RETURN
151       END IF
152 *
153 *     Quick return if possible
154 *
155       IF( N.EQ.0 ) THEN
156          ILO = 1
157          IHI = N
158          RETURN
159       END IF
160 *
161       IF( N.EQ.1 ) THEN
162          ILO = 1
163          IHI = N
164          LSCALE( 1 ) = ONE
165          RSCALE( 1 ) = ONE
166          RETURN
167       END IF
168 *
169       IF( LSAME( JOB, 'N' ) ) THEN
170          ILO = 1
171          IHI = N
172          DO 10 I = 1, N
173             LSCALE( I ) = ONE
174             RSCALE( I ) = ONE
175    10    CONTINUE
176          RETURN
177       END IF
178 *
179       K = 1
180       L = N
181       IF( LSAME( JOB, 'S' ) )
182      $   GO TO 190
183 *
184       GO TO 30
185 *
186 *     Permute the matrices A and B to isolate the eigenvalues.
187 *
188 *     Find row with one nonzero in columns 1 through L
189 *
190    20 CONTINUE
191       L = LM1
192       IF( L.NE.1 )
193      $   GO TO 30
194 *
195       RSCALE( 1 ) = ONE
196       LSCALE( 1 ) = ONE
197       GO TO 190
198 *
199    30 CONTINUE
200       LM1 = L - 1
201       DO 80 I = L, 1-1
202          DO 40 J = 1, LM1
203             JP1 = J + 1
204             IF( A( I, J ).NE.ZERO .OR. B( I, J ).NE.ZERO )
205      $         GO TO 50
206    40    CONTINUE
207          J = L
208          GO TO 70
209 *
210    50    CONTINUE
211          DO 60 J = JP1, L
212             IF( A( I, J ).NE.ZERO .OR. B( I, J ).NE.ZERO )
213      $         GO TO 80
214    60    CONTINUE
215          J = JP1 - 1
216 *
217    70    CONTINUE
218          M = L
219          IFLOW = 1
220          GO TO 160
221    80 CONTINUE
222       GO TO 100
223 *
224 *     Find column with one nonzero in rows K through N
225 *
226    90 CONTINUE
227       K = K + 1
228 *
229   100 CONTINUE
230       DO 150 J = K, L
231          DO 110 I = K, LM1
232             IP1 = I + 1
233             IF( A( I, J ).NE.ZERO .OR. B( I, J ).NE.ZERO )
234      $         GO TO 120
235   110    CONTINUE
236          I = L
237          GO TO 140
238   120    CONTINUE
239          DO 130 I = IP1, L
240             IF( A( I, J ).NE.ZERO .OR. B( I, J ).NE.ZERO )
241      $         GO TO 150
242   130    CONTINUE
243          I = IP1 - 1
244   140    CONTINUE
245          M = K
246          IFLOW = 2
247          GO TO 160
248   150 CONTINUE
249       GO TO 190
250 *
251 *     Permute rows M and I
252 *
253   160 CONTINUE
254       LSCALE( M ) = I
255       IF( I.EQ.M )
256      $   GO TO 170
257       CALL DSWAP( N-K+1, A( I, K ), LDA, A( M, K ), LDA )
258       CALL DSWAP( N-K+1, B( I, K ), LDB, B( M, K ), LDB )
259 *
260 *     Permute columns M and J
261 *
262   170 CONTINUE
263       RSCALE( M ) = J
264       IF( J.EQ.M )
265      $   GO TO 180
266       CALL DSWAP( L, A( 1, J ), 1, A( 1, M ), 1 )
267       CALL DSWAP( L, B( 1, J ), 1, B( 1, M ), 1 )
268 *
269   180 CONTINUE
270       GO TO ( 2090 )IFLOW
271 *
272   190 CONTINUE
273       ILO = K
274       IHI = L
275 *
276       IF( LSAME( JOB, 'P' ) ) THEN
277          DO 195 I = ILO, IHI
278             LSCALE( I ) = ONE
279             RSCALE( I ) = ONE
280   195    CONTINUE
281          RETURN
282       END IF
283 *
284       IF( ILO.EQ.IHI )
285      $   RETURN
286 *
287 *     Balance the submatrix in rows ILO to IHI.
288 *
289       NR = IHI - ILO + 1
290       DO 200 I = ILO, IHI
291          RSCALE( I ) = ZERO
292          LSCALE( I ) = ZERO
293 *
294          WORK( I ) = ZERO
295          WORK( I+N ) = ZERO
296          WORK( I+2*N ) = ZERO
297          WORK( I+3*N ) = ZERO
298          WORK( I+4*N ) = ZERO
299          WORK( I+5*N ) = ZERO
300   200 CONTINUE
301 *
302 *     Compute right side vector in resulting linear equations
303 *
304       BASL = LOG10( SCLFAC )
305       DO 240 I = ILO, IHI
306          DO 230 J = ILO, IHI
307             TB = B( I, J )
308             TA = A( I, J )
309             IF( TA.EQ.ZERO )
310      $         GO TO 210
311             TA = LOG10ABS( TA ) ) / BASL
312   210       CONTINUE
313             IF( TB.EQ.ZERO )
314      $         GO TO 220
315             TB = LOG10ABS( TB ) ) / BASL
316   220       CONTINUE
317             WORK( I+4*N ) = WORK( I+4*N ) - TA - TB
318             WORK( J+5*N ) = WORK( J+5*N ) - TA - TB
319   230    CONTINUE
320   240 CONTINUE
321 *
322       COEF = ONE / DBLE2*NR )
323       COEF2 = COEF*COEF
324       COEF5 = HALF*COEF2
325       NRP2 = NR + 2
326       BETA = ZERO
327       IT = 1
328 *
329 *     Start generalized conjugate gradient iteration
330 *
331   250 CONTINUE
332 *
333       GAMMA = DDOT( NR, WORK( ILO+4*N ), 1, WORK( ILO+4*N ), 1 ) +
334      $        DDOT( NR, WORK( ILO+5*N ), 1, WORK( ILO+5*N ), 1 )
335 *
336       EW = ZERO
337       EWC = ZERO
338       DO 260 I = ILO, IHI
339          EW = EW + WORK( I+4*N )
340          EWC = EWC + WORK( I+5*N )
341   260 CONTINUE
342 *
343       GAMMA = COEF*GAMMA - COEF2*( EW**2+EWC**2 ) - COEF5*( EW-EWC )**2
344       IFGAMMA.EQ.ZERO )
345      $   GO TO 350
346       IF( IT.NE.1 )
347      $   BETA = GAMMA / PGAMMA
348       T = COEF5*( EWC-THREE*EW )
349       TC = COEF5*( EW-THREE*EWC )
350 *
351       CALL DSCAL( NR, BETA, WORK( ILO ), 1 )
352       CALL DSCAL( NR, BETA, WORK( ILO+N ), 1 )
353 *
354       CALL DAXPY( NR, COEF, WORK( ILO+4*N ), 1, WORK( ILO+N ), 1 )
355       CALL DAXPY( NR, COEF, WORK( ILO+5*N ), 1, WORK( ILO ), 1 )
356 *
357       DO 270 I = ILO, IHI
358          WORK( I ) = WORK( I ) + TC
359          WORK( I+N ) = WORK( I+N ) + T
360   270 CONTINUE
361 *
362 *     Apply matrix to vector
363 *
364       DO 300 I = ILO, IHI
365          KOUNT = 0
366          SUM = ZERO
367          DO 290 J = ILO, IHI
368             IF( A( I, J ).EQ.ZERO )
369      $         GO TO 280
370             KOUNT = KOUNT + 1
371             SUM = SUM + WORK( J )
372   280       CONTINUE
373             IF( B( I, J ).EQ.ZERO )
374      $         GO TO 290
375             KOUNT = KOUNT + 1
376             SUM = SUM + WORK( J )
377   290    CONTINUE
378          WORK( I+2*N ) = DBLE( KOUNT )*WORK( I+N ) + SUM
379   300 CONTINUE
380 *
381       DO 330 J = ILO, IHI
382          KOUNT = 0
383          SUM = ZERO
384          DO 320 I = ILO, IHI
385             IF( A( I, J ).EQ.ZERO )
386      $         GO TO 310
387             KOUNT = KOUNT + 1
388             SUM = SUM + WORK( I+N )
389   310       CONTINUE
390             IF( B( I, J ).EQ.ZERO )
391      $         GO TO 320
392             KOUNT = KOUNT + 1
393             SUM = SUM + WORK( I+N )
394   320    CONTINUE
395          WORK( J+3*N ) = DBLE( KOUNT )*WORK( J ) + SUM
396   330 CONTINUE
397 *
398       SUM = DDOT( NR, WORK( ILO+N ), 1, WORK( ILO+2*N ), 1 ) +
399      $      DDOT( NR, WORK( ILO ), 1, WORK( ILO+3*N ), 1 )
400       ALPHA = GAMMA / SUM
401 *
402 *     Determine correction to current iteration
403 *
404       CMAX = ZERO
405       DO 340 I = ILO, IHI
406          COR = ALPHA*WORK( I+N )
407          IFABS( COR ).GT.CMAX )
408      $      CMAX = ABS( COR )
409          LSCALE( I ) = LSCALE( I ) + COR
410          COR = ALPHA*WORK( I )
411          IFABS( COR ).GT.CMAX )
412      $      CMAX = ABS( COR )
413          RSCALE( I ) = RSCALE( I ) + COR
414   340 CONTINUE
415       IF( CMAX.LT.HALF )
416      $   GO TO 350
417 *
418       CALL DAXPY( NR, -ALPHA, WORK( ILO+2*N ), 1, WORK( ILO+4*N ), 1 )
419       CALL DAXPY( NR, -ALPHA, WORK( ILO+3*N ), 1, WORK( ILO+5*N ), 1 )
420 *
421       PGAMMA = GAMMA
422       IT = IT + 1
423       IF( IT.LE.NRP2 )
424      $   GO TO 250
425 *
426 *     End generalized conjugate gradient iteration
427 *
428   350 CONTINUE
429       SFMIN = DLAMCH( 'S' )
430       SFMAX = ONE / SFMIN
431       LSFMIN = INTLOG10( SFMIN ) / BASL+ONE )
432       LSFMAX = INTLOG10( SFMAX ) / BASL )
433       DO 360 I = ILO, IHI
434          IRAB = IDAMAX( N-ILO+1, A( I, ILO ), LDA )
435          RAB = ABS( A( I, IRAB+ILO-1 ) )
436          IRAB = IDAMAX( N-ILO+1, B( I, ILO ), LDB )
437          RAB = MAX( RAB, ABS( B( I, IRAB+ILO-1 ) ) )
438          LRAB = INTLOG10( RAB+SFMIN ) / BASL+ONE )
439          IR = LSCALE( I ) + SIGN( HALF, LSCALE( I ) )
440          IR = MINMAX( IR, LSFMIN ), LSFMAX, LSFMAX-LRAB )
441          LSCALE( I ) = SCLFAC**IR
442          ICAB = IDAMAX( IHI, A( 1, I ), 1 )
443          CAB = ABS( A( ICAB, I ) )
444          ICAB = IDAMAX( IHI, B( 1, I ), 1 )
445          CAB = MAX( CAB, ABS( B( ICAB, I ) ) )
446          LCAB = INTLOG10( CAB+SFMIN ) / BASL+ONE )
447          JC = RSCALE( I ) + SIGN( HALF, RSCALE( I ) )
448          JC = MINMAX( JC, LSFMIN ), LSFMAX, LSFMAX-LCAB )
449          RSCALE( I ) = SCLFAC**JC
450   360 CONTINUE
451 *
452 *     Row scaling of matrices A and B
453 *
454       DO 370 I = ILO, IHI
455          CALL DSCAL( N-ILO+1, LSCALE( I ), A( I, ILO ), LDA )
456          CALL DSCAL( N-ILO+1, LSCALE( I ), B( I, ILO ), LDB )
457   370 CONTINUE
458 *
459 *     Column scaling of matrices A and B
460 *
461       DO 380 J = ILO, IHI
462          CALL DSCAL( IHI, RSCALE( J ), A( 1, J ), 1 )
463          CALL DSCAL( IHI, RSCALE( J ), B( 1, J ), 1 )
464   380 CONTINUE
465 *
466       RETURN
467 *
468 *     End of DGGBAL
469 *
470       END