1       SUBROUTINE DGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
  2      $                  SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR,
  3      $                  LDVSR, WORK, LWORK, BWORK, INFO )
  4 *
  5 *  -- LAPACK driver routine (version 3.2) --
  6 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  7 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  8 *     November 2006
  9 *
 10 *     .. Scalar Arguments ..
 11       CHARACTER          JOBVSL, JOBVSR, SORT
 12       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
 13 *     ..
 14 *     .. Array Arguments ..
 15       LOGICAL            BWORK( * )
 16       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
 17      $                   B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
 18      $                   VSR( LDVSR, * ), WORK( * )
 19 *     ..
 20 *     .. Function Arguments ..
 21       LOGICAL            SELCTG
 22       EXTERNAL           SELCTG
 23 *     ..
 24 *
 25 *  Purpose
 26 *  =======
 27 *
 28 *  DGGES computes for a pair of N-by-N real nonsymmetric matrices (A,B),
 29 *  the generalized eigenvalues, the generalized real Schur form (S,T),
 30 *  optionally, the left and/or right matrices of Schur vectors (VSL and
 31 *  VSR). This gives the generalized Schur factorization
 32 *
 33 *           (A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T )
 34 *
 35 *  Optionally, it also orders the eigenvalues so that a selected cluster
 36 *  of eigenvalues appears in the leading diagonal blocks of the upper
 37 *  quasi-triangular matrix S and the upper triangular matrix T.The
 38 *  leading columns of VSL and VSR then form an orthonormal basis for the
 39 *  corresponding left and right eigenspaces (deflating subspaces).
 40 *
 41 *  (If only the generalized eigenvalues are needed, use the driver
 42 *  DGGEV instead, which is faster.)
 43 *
 44 *  A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
 45 *  or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
 46 *  usually represented as the pair (alpha,beta), as there is a
 47 *  reasonable interpretation for beta=0 or both being zero.
 48 *
 49 *  A pair of matrices (S,T) is in generalized real Schur form if T is
 50 *  upper triangular with non-negative diagonal and S is block upper
 51 *  triangular with 1-by-1 and 2-by-2 blocks.  1-by-1 blocks correspond
 52 *  to real generalized eigenvalues, while 2-by-2 blocks of S will be
 53 *  "standardized" by making the corresponding elements of T have the
 54 *  form:
 55 *          [  a  0  ]
 56 *          [  0  b  ]
 57 *
 58 *  and the pair of corresponding 2-by-2 blocks in S and T will have a
 59 *  complex conjugate pair of generalized eigenvalues.
 60 *
 61 *
 62 *  Arguments
 63 *  =========
 64 *
 65 *  JOBVSL  (input) CHARACTER*1
 66 *          = 'N':  do not compute the left Schur vectors;
 67 *          = 'V':  compute the left Schur vectors.
 68 *
 69 *  JOBVSR  (input) CHARACTER*1
 70 *          = 'N':  do not compute the right Schur vectors;
 71 *          = 'V':  compute the right Schur vectors.
 72 *
 73 *  SORT    (input) CHARACTER*1
 74 *          Specifies whether or not to order the eigenvalues on the
 75 *          diagonal of the generalized Schur form.
 76 *          = 'N':  Eigenvalues are not ordered;
 77 *          = 'S':  Eigenvalues are ordered (see SELCTG);
 78 *
 79 *  SELCTG  (external procedure) LOGICAL FUNCTION of three DOUBLE PRECISION arguments
 80 *          SELCTG must be declared EXTERNAL in the calling subroutine.
 81 *          If SORT = 'N', SELCTG is not referenced.
 82 *          If SORT = 'S', SELCTG is used to select eigenvalues to sort
 83 *          to the top left of the Schur form.
 84 *          An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
 85 *          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
 86 *          one of a complex conjugate pair of eigenvalues is selected,
 87 *          then both complex eigenvalues are selected.
 88 *
 89 *          Note that in the ill-conditioned case, a selected complex
 90 *          eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j),
 91 *          BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2
 92 *          in this case.
 93 *
 94 *  N       (input) INTEGER
 95 *          The order of the matrices A, B, VSL, and VSR.  N >= 0.
 96 *
 97 *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
 98 *          On entry, the first of the pair of matrices.
 99 *          On exit, A has been overwritten by its generalized Schur
100 *          form S.
101 *
102 *  LDA     (input) INTEGER
103 *          The leading dimension of A.  LDA >= max(1,N).
104 *
105 *  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)
106 *          On entry, the second of the pair of matrices.
107 *          On exit, B has been overwritten by its generalized Schur
108 *          form T.
109 *
110 *  LDB     (input) INTEGER
111 *          The leading dimension of B.  LDB >= max(1,N).
112 *
113 *  SDIM    (output) INTEGER
114 *          If SORT = 'N', SDIM = 0.
115 *          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
116 *          for which SELCTG is true.  (Complex conjugate pairs for which
117 *          SELCTG is true for either eigenvalue count as 2.)
118 *
119 *  ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
120 *  ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
121 *  BETA    (output) DOUBLE PRECISION array, dimension (N)
122 *          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
123 *          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i,
124 *          and  BETA(j),j=1,...,N are the diagonals of the complex Schur
125 *          form (S,T) that would result if the 2-by-2 diagonal blocks of
126 *          the real Schur form of (A,B) were further reduced to
127 *          triangular form using 2-by-2 complex unitary transformations.
128 *          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
129 *          positive, then the j-th and (j+1)-st eigenvalues are a
130 *          complex conjugate pair, with ALPHAI(j+1) negative.
131 *
132 *          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
133 *          may easily over- or underflow, and BETA(j) may even be zero.
134 *          Thus, the user should avoid naively computing the ratio.
135 *          However, ALPHAR and ALPHAI will be always less than and
136 *          usually comparable with norm(A) in magnitude, and BETA always
137 *          less than and usually comparable with norm(B).
138 *
139 *  VSL     (output) DOUBLE PRECISION array, dimension (LDVSL,N)
140 *          If JOBVSL = 'V', VSL will contain the left Schur vectors.
141 *          Not referenced if JOBVSL = 'N'.
142 *
143 *  LDVSL   (input) INTEGER
144 *          The leading dimension of the matrix VSL. LDVSL >=1, and
145 *          if JOBVSL = 'V', LDVSL >= N.
146 *
147 *  VSR     (output) DOUBLE PRECISION array, dimension (LDVSR,N)
148 *          If JOBVSR = 'V', VSR will contain the right Schur vectors.
149 *          Not referenced if JOBVSR = 'N'.
150 *
151 *  LDVSR   (input) INTEGER
152 *          The leading dimension of the matrix VSR. LDVSR >= 1, and
153 *          if JOBVSR = 'V', LDVSR >= N.
154 *
155 *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
156 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
157 *
158 *  LWORK   (input) INTEGER
159 *          The dimension of the array WORK.
160 *          If N = 0, LWORK >= 1, else LWORK >= 8*N+16.
161 *          For good performance , LWORK must generally be larger.
162 *
163 *          If LWORK = -1, then a workspace query is assumed; the routine
164 *          only calculates the optimal size of the WORK array, returns
165 *          this value as the first entry of the WORK array, and no error
166 *          message related to LWORK is issued by XERBLA.
167 *
168 *  BWORK   (workspace) LOGICAL array, dimension (N)
169 *          Not referenced if SORT = 'N'.
170 *
171 *  INFO    (output) INTEGER
172 *          = 0:  successful exit
173 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
174 *          = 1,...,N:
175 *                The QZ iteration failed.  (A,B) are not in Schur
176 *                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
177 *                be correct for j=INFO+1,...,N.
178 *          > N:  =N+1: other than QZ iteration failed in DHGEQZ.
179 *                =N+2: after reordering, roundoff changed values of
180 *                      some complex eigenvalues so that leading
181 *                      eigenvalues in the Generalized Schur form no
182 *                      longer satisfy SELCTG=.TRUE.  This could also
183 *                      be caused due to scaling.
184 *                =N+3: reordering failed in DTGSEN.
185 *
186 *  =====================================================================
187 *
188 *     .. Parameters ..
189       DOUBLE PRECISION   ZERO, ONE
190       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
191 *     ..
192 *     .. Local Scalars ..
193       LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
194      $                   LQUERY, LST2SL, WANTST
195       INTEGER            I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT,
196      $                   ILO, IP, IRIGHT, IROWS, ITAU, IWRK, MAXWRK,
197      $                   MINWRK
198       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL,
199      $                   PVSR, SAFMAX, SAFMIN, SMLNUM
200 *     ..
201 *     .. Local Arrays ..
202       INTEGER            IDUM( 1 )
203       DOUBLE PRECISION   DIF( 2 )
204 *     ..
205 *     .. External Subroutines ..
206       EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLABAD,
207      $                   DLACPY, DLASCL, DLASET, DORGQR, DORMQR, DTGSEN,
208      $                   XERBLA
209 *     ..
210 *     .. External Functions ..
211       LOGICAL            LSAME
212       INTEGER            ILAENV
213       DOUBLE PRECISION   DLAMCH, DLANGE
214       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
215 *     ..
216 *     .. Intrinsic Functions ..
217       INTRINSIC          ABSMAXSQRT
218 *     ..
219 *     .. Executable Statements ..
220 *
221 *     Decode the input arguments
222 *
223       IF( LSAME( JOBVSL, 'N' ) ) THEN
224          IJOBVL = 1
225          ILVSL = .FALSE.
226       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
227          IJOBVL = 2
228          ILVSL = .TRUE.
229       ELSE
230          IJOBVL = -1
231          ILVSL = .FALSE.
232       END IF
233 *
234       IF( LSAME( JOBVSR, 'N' ) ) THEN
235          IJOBVR = 1
236          ILVSR = .FALSE.
237       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
238          IJOBVR = 2
239          ILVSR = .TRUE.
240       ELSE
241          IJOBVR = -1
242          ILVSR = .FALSE.
243       END IF
244 *
245       WANTST = LSAME( SORT, 'S' )
246 *
247 *     Test the input arguments
248 *
249       INFO = 0
250       LQUERY = ( LWORK.EQ.-1 )
251       IF( IJOBVL.LE.0 ) THEN
252          INFO = -1
253       ELSE IF( IJOBVR.LE.0 ) THEN
254          INFO = -2
255       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
256          INFO = -3
257       ELSE IF( N.LT.0 ) THEN
258          INFO = -5
259       ELSE IF( LDA.LT.MAX1, N ) ) THEN
260          INFO = -7
261       ELSE IF( LDB.LT.MAX1, N ) ) THEN
262          INFO = -9
263       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
264          INFO = -15
265       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
266          INFO = -17
267       END IF
268 *
269 *     Compute workspace
270 *      (Note: Comments in the code beginning "Workspace:" describe the
271 *       minimal amount of workspace needed at that point in the code,
272 *       as well as the preferred amount for good performance.
273 *       NB refers to the optimal block size for the immediately
274 *       following subroutine, as returned by ILAENV.)
275 *
276       IF( INFO.EQ.0 ) THEN
277          IF( N.GT.0 )THEN
278             MINWRK = MAX8*N, 6*+ 16 )
279             MAXWRK = MINWRK - N +
280      $               N*ILAENV( 1'DGEQRF'' ', N, 1, N, 0 )
281             MAXWRK = MAX( MAXWRK, MINWRK - N +
282      $                    N*ILAENV( 1'DORMQR'' ', N, 1, N, -1 ) )
283             IF( ILVSL ) THEN
284                MAXWRK = MAX( MAXWRK, MINWRK - N +
285      $                       N*ILAENV( 1'DORGQR'' ', N, 1, N, -1 ) )
286             END IF
287          ELSE
288             MINWRK = 1
289             MAXWRK = 1
290          END IF
291          WORK( 1 ) = MAXWRK
292 *
293          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )
294      $      INFO = -19
295       END IF
296 *
297       IF( INFO.NE.0 ) THEN
298          CALL XERBLA( 'DGGES '-INFO )
299          RETURN
300       ELSE IF( LQUERY ) THEN
301          RETURN
302       END IF
303 *
304 *     Quick return if possible
305 *
306       IF( N.EQ.0 ) THEN
307          SDIM = 0
308          RETURN
309       END IF
310 *
311 *     Get machine constants
312 *
313       EPS = DLAMCH( 'P' )
314       SAFMIN = DLAMCH( 'S' )
315       SAFMAX = ONE / SAFMIN
316       CALL DLABAD( SAFMIN, SAFMAX )
317       SMLNUM = SQRT( SAFMIN ) / EPS
318       BIGNUM = ONE / SMLNUM
319 *
320 *     Scale A if max element outside range [SMLNUM,BIGNUM]
321 *
322       ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
323       ILASCL = .FALSE.
324       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
325          ANRMTO = SMLNUM
326          ILASCL = .TRUE.
327       ELSE IF( ANRM.GT.BIGNUM ) THEN
328          ANRMTO = BIGNUM
329          ILASCL = .TRUE.
330       END IF
331       IF( ILASCL )
332      $   CALL DLASCL( 'G'00, ANRM, ANRMTO, N, N, A, LDA, IERR )
333 *
334 *     Scale B if max element outside range [SMLNUM,BIGNUM]
335 *
336       BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
337       ILBSCL = .FALSE.
338       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
339          BNRMTO = SMLNUM
340          ILBSCL = .TRUE.
341       ELSE IF( BNRM.GT.BIGNUM ) THEN
342          BNRMTO = BIGNUM
343          ILBSCL = .TRUE.
344       END IF
345       IF( ILBSCL )
346      $   CALL DLASCL( 'G'00, BNRM, BNRMTO, N, N, B, LDB, IERR )
347 *
348 *     Permute the matrix to make it more nearly triangular
349 *     (Workspace: need 6*N + 2*N space for storing balancing factors)
350 *
351       ILEFT = 1
352       IRIGHT = N + 1
353       IWRK = IRIGHT + N
354       CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
355      $             WORK( IRIGHT ), WORK( IWRK ), IERR )
356 *
357 *     Reduce B to triangular form (QR decomposition of B)
358 *     (Workspace: need N, prefer N*NB)
359 *
360       IROWS = IHI + 1 - ILO
361       ICOLS = N + 1 - ILO
362       ITAU = IWRK
363       IWRK = ITAU + IROWS
364       CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
365      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
366 *
367 *     Apply the orthogonal transformation to matrix A
368 *     (Workspace: need N, prefer N*NB)
369 *
370       CALL DORMQR( 'L''T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
371      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
372      $             LWORK+1-IWRK, IERR )
373 *
374 *     Initialize VSL
375 *     (Workspace: need N, prefer N*NB)
376 *
377       IF( ILVSL ) THEN
378          CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
379          IF( IROWS.GT.1 ) THEN
380             CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
381      $                   VSL( ILO+1, ILO ), LDVSL )
382          END IF
383          CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
384      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
385       END IF
386 *
387 *     Initialize VSR
388 *
389       IF( ILVSR )
390      $   CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
391 *
392 *     Reduce to generalized Hessenberg form
393 *     (Workspace: none needed)
394 *
395       CALL DGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
396      $             LDVSL, VSR, LDVSR, IERR )
397 *
398 *     Perform QZ algorithm, computing Schur vectors if desired
399 *     (Workspace: need N)
400 *
401       IWRK = ITAU
402       CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
403      $             ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
404      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
405       IF( IERR.NE.0 ) THEN
406          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
407             INFO = IERR
408          ELSE IF( IERR.GT..AND. IERR.LE.2*N ) THEN
409             INFO = IERR - N
410          ELSE
411             INFO = N + 1
412          END IF
413          GO TO 50
414       END IF
415 *
416 *     Sort eigenvalues ALPHA/BETA if desired
417 *     (Workspace: need 4*N+16 )
418 *
419       SDIM = 0
420       IF( WANTST ) THEN
421 *
422 *        Undo scaling on eigenvalues before SELCTGing
423 *
424          IF( ILASCL ) THEN
425             CALL DLASCL( 'G'00, ANRMTO, ANRM, N, 1, ALPHAR, N,
426      $                   IERR )
427             CALL DLASCL( 'G'00, ANRMTO, ANRM, N, 1, ALPHAI, N,
428      $                   IERR )
429          END IF
430          IF( ILBSCL )
431      $      CALL DLASCL( 'G'00, BNRMTO, BNRM, N, 1, BETA, N, IERR )
432 *
433 *        Select eigenvalues
434 *
435          DO 10 I = 1, N
436             BWORK( I ) = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
437    10    CONTINUE
438 *
439          CALL DTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, ALPHAR,
440      $                ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PVSL,
441      $                PVSR, DIF, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1,
442      $                IERR )
443          IF( IERR.EQ.1 )
444      $      INFO = N + 3
445 *
446       END IF
447 *
448 *     Apply back-permutation to VSL and VSR
449 *     (Workspace: none needed)
450 *
451       IF( ILVSL )
452      $   CALL DGGBAK( 'P''L', N, ILO, IHI, WORK( ILEFT ),
453      $                WORK( IRIGHT ), N, VSL, LDVSL, IERR )
454 *
455       IF( ILVSR )
456      $   CALL DGGBAK( 'P''R', N, ILO, IHI, WORK( ILEFT ),
457      $                WORK( IRIGHT ), N, VSR, LDVSR, IERR )
458 *
459 *     Check if unscaling would cause over/underflow, if so, rescale
460 *     (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of
461 *     B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I)
462 *
463       IF( ILASCL ) THEN
464          DO 20 I = 1, N
465             IF( ALPHAI( I ).NE.ZERO ) THEN
466                IF( ( ALPHAR( I ) / SAFMAX ).GT.( ANRMTO / ANRM ) .OR.
467      $             ( SAFMIN / ALPHAR( I ) ).GT.( ANRM / ANRMTO ) ) THEN
468                   WORK( 1 ) = ABS( A( I, I ) / ALPHAR( I ) )
469                   BETA( I ) = BETA( I )*WORK( 1 )
470                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
471                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
472                ELSE IF( ( ALPHAI( I ) / SAFMAX ).GT.
473      $                  ( ANRMTO / ANRM ) .OR.
474      $                  ( SAFMIN / ALPHAI( I ) ).GT.( ANRM / ANRMTO ) )
475      $                   THEN
476                   WORK( 1 ) = ABS( A( I, I+1 ) / ALPHAI( I ) )
477                   BETA( I ) = BETA( I )*WORK( 1 )
478                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
479                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
480                END IF
481             END IF
482    20    CONTINUE
483       END IF
484 *
485       IF( ILBSCL ) THEN
486          DO 30 I = 1, N
487             IF( ALPHAI( I ).NE.ZERO ) THEN
488                IF( ( BETA( I ) / SAFMAX ).GT.( BNRMTO / BNRM ) .OR.
489      $             ( SAFMIN / BETA( I ) ).GT.( BNRM / BNRMTO ) ) THEN
490                   WORK( 1 ) = ABS( B( I, I ) / BETA( I ) )
491                   BETA( I ) = BETA( I )*WORK( 1 )
492                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
493                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
494                END IF
495             END IF
496    30    CONTINUE
497       END IF
498 *
499 *     Undo scaling
500 *
501       IF( ILASCL ) THEN
502          CALL DLASCL( 'H'00, ANRMTO, ANRM, N, N, A, LDA, IERR )
503          CALL DLASCL( 'G'00, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
504          CALL DLASCL( 'G'00, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
505       END IF
506 *
507       IF( ILBSCL ) THEN
508          CALL DLASCL( 'U'00, BNRMTO, BNRM, N, N, B, LDB, IERR )
509          CALL DLASCL( 'G'00, BNRMTO, BNRM, N, 1, BETA, N, IERR )
510       END IF
511 *
512       IF( WANTST ) THEN
513 *
514 *        Check if reordering is correct
515 *
516          LASTSL = .TRUE.
517          LST2SL = .TRUE.
518          SDIM = 0
519          IP = 0
520          DO 40 I = 1, N
521             CURSL = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
522             IF( ALPHAI( I ).EQ.ZERO ) THEN
523                IF( CURSL )
524      $            SDIM = SDIM + 1
525                IP = 0
526                IF( CURSL .AND. .NOT.LASTSL )
527      $            INFO = N + 2
528             ELSE
529                IF( IP.EQ.1 ) THEN
530 *
531 *                 Last eigenvalue of conjugate pair
532 *
533                   CURSL = CURSL .OR. LASTSL
534                   LASTSL = CURSL
535                   IF( CURSL )
536      $               SDIM = SDIM + 2
537                   IP = -1
538                   IF( CURSL .AND. .NOT.LST2SL )
539      $               INFO = N + 2
540                ELSE
541 *
542 *                 First eigenvalue of conjugate pair
543 *
544                   IP = 1
545                END IF
546             END IF
547             LST2SL = LASTSL
548             LASTSL = CURSL
549    40    CONTINUE
550 *
551       END IF
552 *
553    50 CONTINUE
554 *
555       WORK( 1 ) = MAXWRK
556 *
557       RETURN
558 *
559 *     End of DGGES
560 *
561       END