1       SUBROUTINE DGGESX( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA,
  2      $                   B, LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL,
  3      $                   VSR, LDVSR, RCONDE, RCONDV, WORK, LWORK, IWORK,
  4      $                   LIWORK, BWORK, INFO )
  5 *
  6 *  -- LAPACK driver routine (version 3.2.1)                           --
  7 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  8 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  9 *  -- April 2009                                                      --
 10 *
 11 *     .. Scalar Arguments ..
 12       CHARACTER          JOBVSL, JOBVSR, SENSE, SORT
 13       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LIWORK, LWORK, N,
 14      $                   SDIM
 15 *     ..
 16 *     .. Array Arguments ..
 17       LOGICAL            BWORK( * )
 18       INTEGER            IWORK( * )
 19       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
 20      $                   B( LDB, * ), BETA( * ), RCONDE( 2 ),
 21      $                   RCONDV( 2 ), VSL( LDVSL, * ), VSR( LDVSR, * ),
 22      $                   WORK( * )
 23 *     ..
 24 *     .. Function Arguments ..
 25       LOGICAL            SELCTG
 26       EXTERNAL           SELCTG
 27 *     ..
 28 *
 29 *  Purpose
 30 *  =======
 31 *
 32 *  DGGESX computes for a pair of N-by-N real nonsymmetric matrices
 33 *  (A,B), the generalized eigenvalues, the real Schur form (S,T), and,
 34 *  optionally, the left and/or right matrices of Schur vectors (VSL and
 35 *  VSR).  This gives the generalized Schur factorization
 36 *
 37 *       (A,B) = ( (VSL) S (VSR)**T, (VSL) T (VSR)**T )
 38 *
 39 *  Optionally, it also orders the eigenvalues so that a selected cluster
 40 *  of eigenvalues appears in the leading diagonal blocks of the upper
 41 *  quasi-triangular matrix S and the upper triangular matrix T; computes
 42 *  a reciprocal condition number for the average of the selected
 43 *  eigenvalues (RCONDE); and computes a reciprocal condition number for
 44 *  the right and left deflating subspaces corresponding to the selected
 45 *  eigenvalues (RCONDV). The leading columns of VSL and VSR then form
 46 *  an orthonormal basis for the corresponding left and right eigenspaces
 47 *  (deflating subspaces).
 48 *
 49 *  A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
 50 *  or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
 51 *  usually represented as the pair (alpha,beta), as there is a
 52 *  reasonable interpretation for beta=0 or for both being zero.
 53 *
 54 *  A pair of matrices (S,T) is in generalized real Schur form if T is
 55 *  upper triangular with non-negative diagonal and S is block upper
 56 *  triangular with 1-by-1 and 2-by-2 blocks.  1-by-1 blocks correspond
 57 *  to real generalized eigenvalues, while 2-by-2 blocks of S will be
 58 *  "standardized" by making the corresponding elements of T have the
 59 *  form:
 60 *          [  a  0  ]
 61 *          [  0  b  ]
 62 *
 63 *  and the pair of corresponding 2-by-2 blocks in S and T will have a
 64 *  complex conjugate pair of generalized eigenvalues.
 65 *
 66 *
 67 *  Arguments
 68 *  =========
 69 *
 70 *  JOBVSL  (input) CHARACTER*1
 71 *          = 'N':  do not compute the left Schur vectors;
 72 *          = 'V':  compute the left Schur vectors.
 73 *
 74 *  JOBVSR  (input) CHARACTER*1
 75 *          = 'N':  do not compute the right Schur vectors;
 76 *          = 'V':  compute the right Schur vectors.
 77 *
 78 *  SORT    (input) CHARACTER*1
 79 *          Specifies whether or not to order the eigenvalues on the
 80 *          diagonal of the generalized Schur form.
 81 *          = 'N':  Eigenvalues are not ordered;
 82 *          = 'S':  Eigenvalues are ordered (see SELCTG).
 83 *
 84 *  SELCTG  (external procedure) LOGICAL FUNCTION of three DOUBLE PRECISION arguments
 85 *          SELCTG must be declared EXTERNAL in the calling subroutine.
 86 *          If SORT = 'N', SELCTG is not referenced.
 87 *          If SORT = 'S', SELCTG is used to select eigenvalues to sort
 88 *          to the top left of the Schur form.
 89 *          An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
 90 *          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
 91 *          one of a complex conjugate pair of eigenvalues is selected,
 92 *          then both complex eigenvalues are selected.
 93 *          Note that a selected complex eigenvalue may no longer satisfy
 94 *          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) = .TRUE. after ordering,
 95 *          since ordering may change the value of complex eigenvalues
 96 *          (especially if the eigenvalue is ill-conditioned), in this
 97 *          case INFO is set to N+3.
 98 *
 99 *  SENSE   (input) CHARACTER*1
100 *          Determines which reciprocal condition numbers are computed.
101 *          = 'N' : None are computed;
102 *          = 'E' : Computed for average of selected eigenvalues only;
103 *          = 'V' : Computed for selected deflating subspaces only;
104 *          = 'B' : Computed for both.
105 *          If SENSE = 'E', 'V', or 'B', SORT must equal 'S'.
106 *
107 *  N       (input) INTEGER
108 *          The order of the matrices A, B, VSL, and VSR.  N >= 0.
109 *
110 *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
111 *          On entry, the first of the pair of matrices.
112 *          On exit, A has been overwritten by its generalized Schur
113 *          form S.
114 *
115 *  LDA     (input) INTEGER
116 *          The leading dimension of A.  LDA >= max(1,N).
117 *
118 *  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)
119 *          On entry, the second of the pair of matrices.
120 *          On exit, B has been overwritten by its generalized Schur
121 *          form T.
122 *
123 *  LDB     (input) INTEGER
124 *          The leading dimension of B.  LDB >= max(1,N).
125 *
126 *  SDIM    (output) INTEGER
127 *          If SORT = 'N', SDIM = 0.
128 *          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
129 *          for which SELCTG is true.  (Complex conjugate pairs for which
130 *          SELCTG is true for either eigenvalue count as 2.)
131 *
132 *  ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
133 *  ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
134 *  BETA    (output) DOUBLE PRECISION array, dimension (N)
135 *          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
136 *          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i
137 *          and BETA(j),j=1,...,N  are the diagonals of the complex Schur
138 *          form (S,T) that would result if the 2-by-2 diagonal blocks of
139 *          the real Schur form of (A,B) were further reduced to
140 *          triangular form using 2-by-2 complex unitary transformations.
141 *          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
142 *          positive, then the j-th and (j+1)-st eigenvalues are a
143 *          complex conjugate pair, with ALPHAI(j+1) negative.
144 *
145 *          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
146 *          may easily over- or underflow, and BETA(j) may even be zero.
147 *          Thus, the user should avoid naively computing the ratio.
148 *          However, ALPHAR and ALPHAI will be always less than and
149 *          usually comparable with norm(A) in magnitude, and BETA always
150 *          less than and usually comparable with norm(B).
151 *
152 *  VSL     (output) DOUBLE PRECISION array, dimension (LDVSL,N)
153 *          If JOBVSL = 'V', VSL will contain the left Schur vectors.
154 *          Not referenced if JOBVSL = 'N'.
155 *
156 *  LDVSL   (input) INTEGER
157 *          The leading dimension of the matrix VSL. LDVSL >=1, and
158 *          if JOBVSL = 'V', LDVSL >= N.
159 *
160 *  VSR     (output) DOUBLE PRECISION array, dimension (LDVSR,N)
161 *          If JOBVSR = 'V', VSR will contain the right Schur vectors.
162 *          Not referenced if JOBVSR = 'N'.
163 *
164 *  LDVSR   (input) INTEGER
165 *          The leading dimension of the matrix VSR. LDVSR >= 1, and
166 *          if JOBVSR = 'V', LDVSR >= N.
167 *
168 *  RCONDE  (output) DOUBLE PRECISION array, dimension ( 2 )
169 *          If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the
170 *          reciprocal condition numbers for the average of the selected
171 *          eigenvalues.
172 *          Not referenced if SENSE = 'N' or 'V'.
173 *
174 *  RCONDV  (output) DOUBLE PRECISION array, dimension ( 2 )
175 *          If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the
176 *          reciprocal condition numbers for the selected deflating
177 *          subspaces.
178 *          Not referenced if SENSE = 'N' or 'E'.
179 *
180 *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
181 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
182 *
183 *  LWORK   (input) INTEGER
184 *          The dimension of the array WORK.
185 *          If N = 0, LWORK >= 1, else if SENSE = 'E', 'V', or 'B',
186 *          LWORK >= max( 8*N, 6*N+16, 2*SDIM*(N-SDIM) ), else
187 *          LWORK >= max( 8*N, 6*N+16 ).
188 *          Note that 2*SDIM*(N-SDIM) <= N*N/2.
189 *          Note also that an error is only returned if
190 *          LWORK < max( 8*N, 6*N+16), but if SENSE = 'E' or 'V' or 'B'
191 *          this may not be large enough.
192 *
193 *          If LWORK = -1, then a workspace query is assumed; the routine
194 *          only calculates the bound on the optimal size of the WORK
195 *          array and the minimum size of the IWORK array, returns these
196 *          values as the first entries of the WORK and IWORK arrays, and
197 *          no error message related to LWORK or LIWORK is issued by
198 *          XERBLA.
199 *
200 *  IWORK   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
201 *          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
202 *
203 *  LIWORK  (input) INTEGER
204 *          The dimension of the array IWORK.
205 *          If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise
206 *          LIWORK >= N+6.
207 *
208 *          If LIWORK = -1, then a workspace query is assumed; the
209 *          routine only calculates the bound on the optimal size of the
210 *          WORK array and the minimum size of the IWORK array, returns
211 *          these values as the first entries of the WORK and IWORK
212 *          arrays, and no error message related to LWORK or LIWORK is
213 *          issued by XERBLA.
214 *
215 *  BWORK   (workspace) LOGICAL array, dimension (N)
216 *          Not referenced if SORT = 'N'.
217 *
218 *  INFO    (output) INTEGER
219 *          = 0:  successful exit
220 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
221 *          = 1,...,N:
222 *                The QZ iteration failed.  (A,B) are not in Schur
223 *                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
224 *                be correct for j=INFO+1,...,N.
225 *          > N:  =N+1: other than QZ iteration failed in DHGEQZ
226 *                =N+2: after reordering, roundoff changed values of
227 *                      some complex eigenvalues so that leading
228 *                      eigenvalues in the Generalized Schur form no
229 *                      longer satisfy SELCTG=.TRUE.  This could also
230 *                      be caused due to scaling.
231 *                =N+3: reordering failed in DTGSEN.
232 *
233 *  Further Details
234 *  ===============
235 *
236 *  An approximate (asymptotic) bound on the average absolute error of
237 *  the selected eigenvalues is
238 *
239 *       EPS * norm((A, B)) / RCONDE( 1 ).
240 *
241 *  An approximate (asymptotic) bound on the maximum angular error in
242 *  the computed deflating subspaces is
243 *
244 *       EPS * norm((A, B)) / RCONDV( 2 ).
245 *
246 *  See LAPACK User's Guide, section 4.11 for more information.
247 *
248 *  =====================================================================
249 *
250 *     .. Parameters ..
251       DOUBLE PRECISION   ZERO, ONE
252       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
253 *     ..
254 *     .. Local Scalars ..
255       LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
256      $                   LQUERY, LST2SL, WANTSB, WANTSE, WANTSN, WANTST,
257      $                   WANTSV
258       INTEGER            I, ICOLS, IERR, IHI, IJOB, IJOBVL, IJOBVR,
259      $                   ILEFT, ILO, IP, IRIGHT, IROWS, ITAU, IWRK,
260      $                   LIWMIN, LWRK, MAXWRK, MINWRK
261       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PL,
262      $                   PR, SAFMAX, SAFMIN, SMLNUM
263 *     ..
264 *     .. Local Arrays ..
265       DOUBLE PRECISION   DIF( 2 )
266 *     ..
267 *     .. External Subroutines ..
268       EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLABAD,
269      $                   DLACPY, DLASCL, DLASET, DORGQR, DORMQR, DTGSEN,
270      $                   XERBLA
271 *     ..
272 *     .. External Functions ..
273       LOGICAL            LSAME
274       INTEGER            ILAENV
275       DOUBLE PRECISION   DLAMCH, DLANGE
276       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
277 *     ..
278 *     .. Intrinsic Functions ..
279       INTRINSIC          ABSMAXSQRT
280 *     ..
281 *     .. Executable Statements ..
282 *
283 *     Decode the input arguments
284 *
285       IF( LSAME( JOBVSL, 'N' ) ) THEN
286          IJOBVL = 1
287          ILVSL = .FALSE.
288       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
289          IJOBVL = 2
290          ILVSL = .TRUE.
291       ELSE
292          IJOBVL = -1
293          ILVSL = .FALSE.
294       END IF
295 *
296       IF( LSAME( JOBVSR, 'N' ) ) THEN
297          IJOBVR = 1
298          ILVSR = .FALSE.
299       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
300          IJOBVR = 2
301          ILVSR = .TRUE.
302       ELSE
303          IJOBVR = -1
304          ILVSR = .FALSE.
305       END IF
306 *
307       WANTST = LSAME( SORT, 'S' )
308       WANTSN = LSAME( SENSE, 'N' )
309       WANTSE = LSAME( SENSE, 'E' )
310       WANTSV = LSAME( SENSE, 'V' )
311       WANTSB = LSAME( SENSE, 'B' )
312       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
313       IF( WANTSN ) THEN
314          IJOB = 0
315       ELSE IF( WANTSE ) THEN
316          IJOB = 1
317       ELSE IF( WANTSV ) THEN
318          IJOB = 2
319       ELSE IF( WANTSB ) THEN
320          IJOB = 4
321       END IF
322 *
323 *     Test the input arguments
324 *
325       INFO = 0
326       IF( IJOBVL.LE.0 ) THEN
327          INFO = -1
328       ELSE IF( IJOBVR.LE.0 ) THEN
329          INFO = -2
330       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
331          INFO = -3
332       ELSE IF.NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
333      $         ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
334          INFO = -5
335       ELSE IF( N.LT.0 ) THEN
336          INFO = -6
337       ELSE IF( LDA.LT.MAX1, N ) ) THEN
338          INFO = -8
339       ELSE IF( LDB.LT.MAX1, N ) ) THEN
340          INFO = -10
341       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
342          INFO = -16
343       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
344          INFO = -18
345       END IF
346 *
347 *     Compute workspace
348 *      (Note: Comments in the code beginning "Workspace:" describe the
349 *       minimal amount of workspace needed at that point in the code,
350 *       as well as the preferred amount for good performance.
351 *       NB refers to the optimal block size for the immediately
352 *       following subroutine, as returned by ILAENV.)
353 *
354       IF( INFO.EQ.0 ) THEN
355          IF( N.GT.0THEN
356             MINWRK = MAX8*N, 6*+ 16 )
357             MAXWRK = MINWRK - N +
358      $               N*ILAENV( 1'DGEQRF'' ', N, 1, N, 0 )
359             MAXWRK = MAX( MAXWRK, MINWRK - N +
360      $               N*ILAENV( 1'DORMQR'' ', N, 1, N, -1 ) )
361             IF( ILVSL ) THEN
362                MAXWRK = MAX( MAXWRK, MINWRK - N +
363      $                  N*ILAENV( 1'DORGQR'' ', N, 1, N, -1 ) )
364             END IF
365             LWRK = MAXWRK
366             IF( IJOB.GE.1 )
367      $         LWRK = MAX( LWRK, N*N/2 )
368          ELSE
369             MINWRK = 1
370             MAXWRK = 1
371             LWRK   = 1
372          END IF
373          WORK( 1 ) = LWRK
374          IF( WANTSN .OR. N.EQ.0 ) THEN
375             LIWMIN = 1
376          ELSE
377             LIWMIN = N + 6
378          END IF
379          IWORK( 1 ) = LIWMIN
380 *
381          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
382             INFO = -22
383          ELSE IF( LIWORK.LT.LIWMIN  .AND. .NOT.LQUERY ) THEN
384             INFO = -24
385          END IF
386       END IF
387 *
388       IF( INFO.NE.0 ) THEN
389          CALL XERBLA( 'DGGESX'-INFO )
390          RETURN
391       ELSE IF (LQUERY) THEN
392          RETURN
393       END IF
394 *
395 *     Quick return if possible
396 *
397       IF( N.EQ.0 ) THEN
398          SDIM = 0
399          RETURN
400       END IF
401 *
402 *     Get machine constants
403 *
404       EPS = DLAMCH( 'P' )
405       SAFMIN = DLAMCH( 'S' )
406       SAFMAX = ONE / SAFMIN
407       CALL DLABAD( SAFMIN, SAFMAX )
408       SMLNUM = SQRT( SAFMIN ) / EPS
409       BIGNUM = ONE / SMLNUM
410 *
411 *     Scale A if max element outside range [SMLNUM,BIGNUM]
412 *
413       ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
414       ILASCL = .FALSE.
415       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
416          ANRMTO = SMLNUM
417          ILASCL = .TRUE.
418       ELSE IF( ANRM.GT.BIGNUM ) THEN
419          ANRMTO = BIGNUM
420          ILASCL = .TRUE.
421       END IF
422       IF( ILASCL )
423      $   CALL DLASCL( 'G'00, ANRM, ANRMTO, N, N, A, LDA, IERR )
424 *
425 *     Scale B if max element outside range [SMLNUM,BIGNUM]
426 *
427       BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
428       ILBSCL = .FALSE.
429       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
430          BNRMTO = SMLNUM
431          ILBSCL = .TRUE.
432       ELSE IF( BNRM.GT.BIGNUM ) THEN
433          BNRMTO = BIGNUM
434          ILBSCL = .TRUE.
435       END IF
436       IF( ILBSCL )
437      $   CALL DLASCL( 'G'00, BNRM, BNRMTO, N, N, B, LDB, IERR )
438 *
439 *     Permute the matrix to make it more nearly triangular
440 *     (Workspace: need 6*N + 2*N for permutation parameters)
441 *
442       ILEFT = 1
443       IRIGHT = N + 1
444       IWRK = IRIGHT + N
445       CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
446      $             WORK( IRIGHT ), WORK( IWRK ), IERR )
447 *
448 *     Reduce B to triangular form (QR decomposition of B)
449 *     (Workspace: need N, prefer N*NB)
450 *
451       IROWS = IHI + 1 - ILO
452       ICOLS = N + 1 - ILO
453       ITAU = IWRK
454       IWRK = ITAU + IROWS
455       CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
456      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
457 *
458 *     Apply the orthogonal transformation to matrix A
459 *     (Workspace: need N, prefer N*NB)
460 *
461       CALL DORMQR( 'L''T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
462      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
463      $             LWORK+1-IWRK, IERR )
464 *
465 *     Initialize VSL
466 *     (Workspace: need N, prefer N*NB)
467 *
468       IF( ILVSL ) THEN
469          CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
470          IF( IROWS.GT.1 ) THEN
471             CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
472      $                   VSL( ILO+1, ILO ), LDVSL )
473          END IF
474          CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
475      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
476       END IF
477 *
478 *     Initialize VSR
479 *
480       IF( ILVSR )
481      $   CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
482 *
483 *     Reduce to generalized Hessenberg form
484 *     (Workspace: none needed)
485 *
486       CALL DGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
487      $             LDVSL, VSR, LDVSR, IERR )
488 *
489       SDIM = 0
490 *
491 *     Perform QZ algorithm, computing Schur vectors if desired
492 *     (Workspace: need N)
493 *
494       IWRK = ITAU
495       CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
496      $             ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
497      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
498       IF( IERR.NE.0 ) THEN
499          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
500             INFO = IERR
501          ELSE IF( IERR.GT..AND. IERR.LE.2*N ) THEN
502             INFO = IERR - N
503          ELSE
504             INFO = N + 1
505          END IF
506          GO TO 60
507       END IF
508 *
509 *     Sort eigenvalues ALPHA/BETA and compute the reciprocal of
510 *     condition number(s)
511 *     (Workspace: If IJOB >= 1, need MAX( 8*(N+1), 2*SDIM*(N-SDIM) )
512 *                 otherwise, need 8*(N+1) )
513 *
514       IF( WANTST ) THEN
515 *
516 *        Undo scaling on eigenvalues before SELCTGing
517 *
518          IF( ILASCL ) THEN
519             CALL DLASCL( 'G'00, ANRMTO, ANRM, N, 1, ALPHAR, N,
520      $                   IERR )
521             CALL DLASCL( 'G'00, ANRMTO, ANRM, N, 1, ALPHAI, N,
522      $                   IERR )
523          END IF
524          IF( ILBSCL )
525      $      CALL DLASCL( 'G'00, BNRMTO, BNRM, N, 1, BETA, N, IERR )
526 *
527 *        Select eigenvalues
528 *
529          DO 10 I = 1, N
530             BWORK( I ) = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
531    10    CONTINUE
532 *
533 *        Reorder eigenvalues, transform Generalized Schur vectors, and
534 *        compute reciprocal condition numbers
535 *
536          CALL DTGSEN( IJOB, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB,
537      $                ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
538      $                SDIM, PL, PR, DIF, WORK( IWRK ), LWORK-IWRK+1,
539      $                IWORK, LIWORK, IERR )
540 *
541          IF( IJOB.GE.1 )
542      $      MAXWRK = MAX( MAXWRK, 2*SDIM*( N-SDIM ) )
543          IF( IERR.EQ.-22 ) THEN
544 *
545 *            not enough real workspace
546 *
547             INFO = -22
548          ELSE
549             IF( IJOB.EQ.1 .OR. IJOB.EQ.4 ) THEN
550                RCONDE( 1 ) = PL
551                RCONDE( 2 ) = PR
552             END IF
553             IF( IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
554                RCONDV( 1 ) = DIF( 1 )
555                RCONDV( 2 ) = DIF( 2 )
556             END IF
557             IF( IERR.EQ.1 )
558      $         INFO = N + 3
559          END IF
560 *
561       END IF
562 *
563 *     Apply permutation to VSL and VSR
564 *     (Workspace: none needed)
565 *
566       IF( ILVSL )
567      $   CALL DGGBAK( 'P''L', N, ILO, IHI, WORK( ILEFT ),
568      $                WORK( IRIGHT ), N, VSL, LDVSL, IERR )
569 *
570       IF( ILVSR )
571      $   CALL DGGBAK( 'P''R', N, ILO, IHI, WORK( ILEFT ),
572      $                WORK( IRIGHT ), N, VSR, LDVSR, IERR )
573 *
574 *     Check if unscaling would cause over/underflow, if so, rescale
575 *     (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of
576 *     B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I)
577 *
578       IF( ILASCL ) THEN
579          DO 20 I = 1, N
580             IF( ALPHAI( I ).NE.ZERO ) THEN
581                IF( ( ALPHAR( I ) / SAFMAX ).GT.( ANRMTO / ANRM ) .OR.
582      $             ( SAFMIN / ALPHAR( I ) ).GT.( ANRM / ANRMTO ) ) THEN
583                   WORK( 1 ) = ABS( A( I, I ) / ALPHAR( I ) )
584                   BETA( I ) = BETA( I )*WORK( 1 )
585                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
586                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
587                ELSE IF( ( ALPHAI( I ) / SAFMAX ).GT.
588      $                  ( ANRMTO / ANRM ) .OR.
589      $                  ( SAFMIN / ALPHAI( I ) ).GT.( ANRM / ANRMTO ) )
590      $                   THEN
591                   WORK( 1 ) = ABS( A( I, I+1 ) / ALPHAI( I ) )
592                   BETA( I ) = BETA( I )*WORK( 1 )
593                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
594                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
595                END IF
596             END IF
597    20    CONTINUE
598       END IF
599 *
600       IF( ILBSCL ) THEN
601          DO 30 I = 1, N
602             IF( ALPHAI( I ).NE.ZERO ) THEN
603                IF( ( BETA( I ) / SAFMAX ).GT.( BNRMTO / BNRM ) .OR.
604      $             ( SAFMIN / BETA( I ) ).GT.( BNRM / BNRMTO ) ) THEN
605                   WORK( 1 ) = ABS( B( I, I ) / BETA( I ) )
606                   BETA( I ) = BETA( I )*WORK( 1 )
607                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
608                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
609                END IF
610             END IF
611    30    CONTINUE
612       END IF
613 *
614 *     Undo scaling
615 *
616       IF( ILASCL ) THEN
617          CALL DLASCL( 'H'00, ANRMTO, ANRM, N, N, A, LDA, IERR )
618          CALL DLASCL( 'G'00, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
619          CALL DLASCL( 'G'00, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
620       END IF
621 *
622       IF( ILBSCL ) THEN
623          CALL DLASCL( 'U'00, BNRMTO, BNRM, N, N, B, LDB, IERR )
624          CALL DLASCL( 'G'00, BNRMTO, BNRM, N, 1, BETA, N, IERR )
625       END IF
626 *
627       IF( WANTST ) THEN
628 *
629 *        Check if reordering is correct
630 *
631          LASTSL = .TRUE.
632          LST2SL = .TRUE.
633          SDIM = 0
634          IP = 0
635          DO 50 I = 1, N
636             CURSL = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
637             IF( ALPHAI( I ).EQ.ZERO ) THEN
638                IF( CURSL )
639      $            SDIM = SDIM + 1
640                IP = 0
641                IF( CURSL .AND. .NOT.LASTSL )
642      $            INFO = N + 2
643             ELSE
644                IF( IP.EQ.1 ) THEN
645 *
646 *                 Last eigenvalue of conjugate pair
647 *
648                   CURSL = CURSL .OR. LASTSL
649                   LASTSL = CURSL
650                   IF( CURSL )
651      $               SDIM = SDIM + 2
652                   IP = -1
653                   IF( CURSL .AND. .NOT.LST2SL )
654      $               INFO = N + 2
655                ELSE
656 *
657 *                 First eigenvalue of conjugate pair
658 *
659                   IP = 1
660                END IF
661             END IF
662             LST2SL = LASTSL
663             LASTSL = CURSL
664    50    CONTINUE
665 *
666       END IF
667 *
668    60 CONTINUE
669 *
670       WORK( 1 ) = MAXWRK
671       IWORK( 1 ) = LIWMIN
672 *
673       RETURN
674 *
675 *     End of DGGESX
676 *
677       END