1       DOUBLE PRECISION FUNCTION DLA_GBRCOND( TRANS, N, KL, KU, AB, LDAB,
  2      $                                       AFB, LDAFB, IPIV, CMODE, C,
  3      $                                       INFO, WORK, IWORK )
  4 *
  5 *     -- LAPACK routine (version 3.2.2)                               --
  6 *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
  7 *     -- Jason Riedy of Univ. of California Berkeley.                 --
  8 *     -- June 2010                                                    --
  9 *
 10 *     -- LAPACK is a software package provided by Univ. of Tennessee, --
 11 *     -- Univ. of California Berkeley and NAG Ltd.                    --
 12 *
 13       IMPLICIT NONE
 14 *     ..
 15 *     .. Scalar Arguments ..
 16       CHARACTER          TRANS
 17       INTEGER            N, LDAB, LDAFB, INFO, KL, KU, CMODE
 18 *     ..
 19 *     .. Array Arguments ..
 20       INTEGER            IWORK( * ), IPIV( * )
 21       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), WORK( * ),
 22      $                   C( * )
 23 *     ..
 24 *
 25 *  Purpose
 26 *  =======
 27 *
 28 *     DLA_GBRCOND Estimates the Skeel condition number of  op(A) * op2(C)
 29 *     where op2 is determined by CMODE as follows
 30 *     CMODE =  1    op2(C) = C
 31 *     CMODE =  0    op2(C) = I
 32 *     CMODE = -1    op2(C) = inv(C)
 33 *     The Skeel condition number  cond(A) = norminf( |inv(A)||A| )
 34 *     is computed by computing scaling factors R such that
 35 *     diag(R)*A*op2(C) is row equilibrated and computing the standard
 36 *     infinity-norm condition number.
 37 *
 38 *  Arguments
 39 *  =========
 40 *
 41 *     TRANS   (input) CHARACTER*1
 42 *     Specifies the form of the system of equations:
 43 *       = 'N':  A * X = B     (No transpose)
 44 *       = 'T':  A**T * X = B  (Transpose)
 45 *       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
 46 *
 47 *     N       (input) INTEGER
 48 *     The number of linear equations, i.e., the order of the
 49 *     matrix A.  N >= 0.
 50 *
 51 *     KL      (input) INTEGER
 52 *     The number of subdiagonals within the band of A.  KL >= 0.
 53 *
 54 *     KU      (input) INTEGER
 55 *     The number of superdiagonals within the band of A.  KU >= 0.
 56 *
 57 *     AB      (input) DOUBLE PRECISION array, dimension (LDAB,N)
 58 *     On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
 59 *     The j-th column of A is stored in the j-th column of the
 60 *     array AB as follows:
 61 *     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
 62 *
 63 *     LDAB    (input) INTEGER
 64 *     The leading dimension of the array AB.  LDAB >= KL+KU+1.
 65 *
 66 *     AFB     (input) DOUBLE PRECISION array, dimension (LDAFB,N)
 67 *     Details of the LU factorization of the band matrix A, as
 68 *     computed by DGBTRF.  U is stored as an upper triangular
 69 *     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
 70 *     and the multipliers used during the factorization are stored
 71 *     in rows KL+KU+2 to 2*KL+KU+1.
 72 *
 73 *     LDAFB   (input) INTEGER
 74 *     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
 75 *
 76 *     IPIV    (input) INTEGER array, dimension (N)
 77 *     The pivot indices from the factorization A = P*L*U
 78 *     as computed by DGBTRF; row i of the matrix was interchanged
 79 *     with row IPIV(i).
 80 *
 81 *     CMODE   (input) INTEGER
 82 *     Determines op2(C) in the formula op(A) * op2(C) as follows:
 83 *     CMODE =  1    op2(C) = C
 84 *     CMODE =  0    op2(C) = I
 85 *     CMODE = -1    op2(C) = inv(C)
 86 *
 87 *     C       (input) DOUBLE PRECISION array, dimension (N)
 88 *     The vector C in the formula op(A) * op2(C).
 89 *
 90 *     INFO    (output) INTEGER
 91 *       = 0:  Successful exit.
 92 *     i > 0:  The ith argument is invalid.
 93 *
 94 *     WORK    (input) DOUBLE PRECISION array, dimension (5*N).
 95 *     Workspace.
 96 *
 97 *     IWORK   (input) INTEGER array, dimension (N).
 98 *     Workspace.
 99 *
100 *  =====================================================================
101 *
102 *     .. Local Scalars ..
103       LOGICAL            NOTRANS
104       INTEGER            KASE, I, J, KD, KE
105       DOUBLE PRECISION   AINVNM, TMP
106 *     ..
107 *     .. Local Arrays ..
108       INTEGER            ISAVE( 3 )
109 *     ..
110 *     .. External Functions ..
111       LOGICAL            LSAME
112       EXTERNAL           LSAME
113 *     ..
114 *     .. External Subroutines ..
115       EXTERNAL           DLACN2, DGBTRS, XERBLA
116 *     ..
117 *     .. Intrinsic Functions ..
118       INTRINSIC          ABSMAX
119 *     ..
120 *     .. Executable Statements ..
121 *
122       DLA_GBRCOND = 0.0D+0
123 *
124       INFO = 0
125       NOTRANS = LSAME( TRANS, 'N' )
126       IF ( .NOT. NOTRANS .AND. .NOT. LSAME(TRANS, 'T')
127      $     .AND. .NOT. LSAME(TRANS, 'C') ) THEN
128          INFO = -1
129       ELSE IF( N.LT.0 ) THEN
130          INFO = -2
131       ELSE IF( KL.LT.0 .OR. KL.GT.N-1 ) THEN
132          INFO = -3
133       ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
134          INFO = -4
135       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
136          INFO = -6
137       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
138          INFO = -8
139       END IF
140       IF( INFO.NE.0 ) THEN
141          CALL XERBLA( 'DLA_GBRCOND'-INFO )
142          RETURN
143       END IF
144       IF( N.EQ.0 ) THEN
145          DLA_GBRCOND = 1.0D+0
146          RETURN
147       END IF
148 *
149 *     Compute the equilibration matrix R such that
150 *     inv(R)*A*C has unit 1-norm.
151 *
152       KD = KU + 1
153       KE = KL + 1
154       IF ( NOTRANS ) THEN
155          DO I = 1, N
156             TMP = 0.0D+0
157                IF ( CMODE .EQ. 1 ) THEN
158                   DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
159                      TMP = TMP + ABS( AB( KD+I-J, J ) * C( J ) )
160                   END DO
161                ELSE IF ( CMODE .EQ. 0 ) THEN
162                   DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
163                      TMP = TMP + ABS( AB( KD+I-J, J ) )
164                   END DO
165                ELSE
166                   DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
167                      TMP = TMP + ABS( AB( KD+I-J, J ) / C( J ) )
168                   END DO
169                END IF
170             WORK( 2*N+I ) = TMP
171          END DO
172       ELSE
173          DO I = 1, N
174             TMP = 0.0D+0
175             IF ( CMODE .EQ. 1 ) THEN
176                DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
177                   TMP = TMP + ABS( AB( KE-I+J, I ) * C( J ) )
178                END DO
179             ELSE IF ( CMODE .EQ. 0 ) THEN
180                DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
181                   TMP = TMP + ABS( AB( KE-I+J, I ) )
182                END DO
183             ELSE
184                DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
185                   TMP = TMP + ABS( AB( KE-I+J, I ) / C( J ) )
186                END DO
187             END IF
188             WORK( 2*N+I ) = TMP
189          END DO
190       END IF
191 *
192 *     Estimate the norm of inv(op(A)).
193 *
194       AINVNM = 0.0D+0
195 
196       KASE = 0
197    10 CONTINUE
198       CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
199       IF( KASE.NE.0 ) THEN
200          IF( KASE.EQ.2 ) THEN
201 *
202 *           Multiply by R.
203 *
204             DO I = 1, N
205                WORK( I ) = WORK( I ) * WORK( 2*N+I )
206             END DO
207 
208             IF ( NOTRANS ) THEN
209                CALL DGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB,
210      $              IPIV, WORK, N, INFO )
211             ELSE
212                CALL DGBTRS( 'Transpose', N, KL, KU, 1, AFB, LDAFB, IPIV,
213      $              WORK, N, INFO )
214             END IF
215 *
216 *           Multiply by inv(C).
217 *
218             IF ( CMODE .EQ. 1 ) THEN
219                DO I = 1, N
220                   WORK( I ) = WORK( I ) / C( I )
221                END DO
222             ELSE IF ( CMODE .EQ. -1 ) THEN
223                DO I = 1, N
224                   WORK( I ) = WORK( I ) * C( I )
225                END DO
226             END IF
227          ELSE
228 *
229 *           Multiply by inv(C**T).
230 *
231             IF ( CMODE .EQ. 1 ) THEN
232                DO I = 1, N
233                   WORK( I ) = WORK( I ) / C( I )
234                END DO
235             ELSE IF ( CMODE .EQ. -1 ) THEN
236                DO I = 1, N
237                   WORK( I ) = WORK( I ) * C( I )
238                END DO
239             END IF
240 
241             IF ( NOTRANS ) THEN
242                CALL DGBTRS( 'Transpose', N, KL, KU, 1, AFB, LDAFB, IPIV,
243      $              WORK, N, INFO )
244             ELSE
245                CALL DGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB,
246      $              IPIV, WORK, N, INFO )
247             END IF
248 *
249 *           Multiply by R.
250 *
251             DO I = 1, N
252                WORK( I ) = WORK( I ) * WORK( 2*N+I )
253             END DO
254          END IF
255          GO TO 10
256       END IF
257 *
258 *     Compute the estimate of the reciprocal condition number.
259 *
260       IF( AINVNM .NE. 0.0D+0 )
261      $   DLA_GBRCOND = ( 1.0D+0 / AINVNM )
262 *
263       RETURN
264 *
265       END