1       DOUBLE PRECISION FUNCTION DLA_GERCOND ( TRANS, N, A, LDA, AF,
  2      $                                        LDAF, IPIV, CMODE, C,
  3      $                                        INFO, WORK, IWORK )
  4 *
  5 *     -- LAPACK routine (version 3.2.1)                                 --
  6 *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
  7 *     -- Jason Riedy of Univ. of California Berkeley.                 --
  8 *     -- April 2009                                                   --
  9 *
 10 *     -- LAPACK is a software package provided by Univ. of Tennessee, --
 11 *     -- Univ. of California Berkeley and NAG Ltd.                    --
 12 *
 13       IMPLICIT NONE
 14 *     ..
 15 *     .. Scalar Arguments ..
 16       CHARACTER          TRANS
 17       INTEGER            N, LDA, LDAF, INFO, CMODE
 18 *     ..
 19 *     .. Array Arguments ..
 20       INTEGER            IPIV( * ), IWORK( * )
 21       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), WORK( * ),
 22      $                   C( * )
 23 *     ..
 24 *
 25 *  Purpose
 26 *  =======
 27 *
 28 *     DLA_GERCOND estimates the Skeel condition number of op(A) * op2(C)
 29 *     where op2 is determined by CMODE as follows
 30 *     CMODE =  1    op2(C) = C
 31 *     CMODE =  0    op2(C) = I
 32 *     CMODE = -1    op2(C) = inv(C)
 33 *     The Skeel condition number cond(A) = norminf( |inv(A)||A| )
 34 *     is computed by computing scaling factors R such that
 35 *     diag(R)*A*op2(C) is row equilibrated and computing the standard
 36 *     infinity-norm condition number.
 37 *
 38 *  Arguments
 39 *  ==========
 40 *
 41 *     TRANS   (input) CHARACTER*1
 42 *     Specifies the form of the system of equations:
 43 *       = 'N':  A * X = B     (No transpose)
 44 *       = 'T':  A**T * X = B  (Transpose)
 45 *       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
 46 *
 47 *     N       (input) INTEGER
 48 *     The number of linear equations, i.e., the order of the
 49 *     matrix A.  N >= 0.
 50 *
 51 *     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
 52 *     On entry, the N-by-N matrix A.
 53 *
 54 *     LDA     (input) INTEGER
 55 *     The leading dimension of the array A.  LDA >= max(1,N).
 56 *
 57 *     AF      (input) DOUBLE PRECISION array, dimension (LDAF,N)
 58 *     The factors L and U from the factorization
 59 *     A = P*L*U as computed by DGETRF.
 60 *
 61 *     LDAF    (input) INTEGER
 62 *     The leading dimension of the array AF.  LDAF >= max(1,N).
 63 *
 64 *     IPIV    (input) INTEGER array, dimension (N)
 65 *     The pivot indices from the factorization A = P*L*U
 66 *     as computed by DGETRF; row i of the matrix was interchanged
 67 *     with row IPIV(i).
 68 *
 69 *     CMODE   (input) INTEGER
 70 *     Determines op2(C) in the formula op(A) * op2(C) as follows:
 71 *     CMODE =  1    op2(C) = C
 72 *     CMODE =  0    op2(C) = I
 73 *     CMODE = -1    op2(C) = inv(C)
 74 *
 75 *     C       (input) DOUBLE PRECISION array, dimension (N)
 76 *     The vector C in the formula op(A) * op2(C).
 77 *
 78 *     INFO    (output) INTEGER
 79 *       = 0:  Successful exit.
 80 *     i > 0:  The ith argument is invalid.
 81 *
 82 *     WORK    (input) DOUBLE PRECISION array, dimension (3*N).
 83 *     Workspace.
 84 *
 85 *     IWORK   (input) INTEGER array, dimension (N).
 86 *     Workspace.
 87 *
 88 *  =====================================================================
 89 *
 90 *     .. Local Scalars ..
 91       LOGICAL            NOTRANS
 92       INTEGER            KASE, I, J
 93       DOUBLE PRECISION   AINVNM, TMP
 94 *     ..
 95 *     .. Local Arrays ..
 96       INTEGER            ISAVE( 3 )
 97 *     ..
 98 *     .. External Functions ..
 99       LOGICAL            LSAME
100       EXTERNAL           LSAME
101 *     ..
102 *     .. External Subroutines ..
103       EXTERNAL           DLACN2, DGETRS, XERBLA
104 *     ..
105 *     .. Intrinsic Functions ..
106       INTRINSIC          ABSMAX
107 *     ..
108 *     .. Executable Statements ..
109 *
110       DLA_GERCOND = 0.0D+0
111 *
112       INFO = 0
113       NOTRANS = LSAME( TRANS, 'N' )
114       IF ( .NOT. NOTRANS .AND. .NOT. LSAME(TRANS, 'T')
115      $     .AND. .NOT. LSAME(TRANS, 'C') ) THEN
116          INFO = -1
117       ELSE IF( N.LT.0 ) THEN
118          INFO = -2
119       ELSE IF( LDA.LT.MAX1, N ) ) THEN
120          INFO = -4
121       ELSE IF( LDAF.LT.MAX1, N ) ) THEN
122          INFO = -6
123       END IF
124       IF( INFO.NE.0 ) THEN
125          CALL XERBLA( 'DLA_GERCOND'-INFO )
126          RETURN
127       END IF
128       IF( N.EQ.0 ) THEN
129          DLA_GERCOND = 1.0D+0
130          RETURN
131       END IF
132 *
133 *     Compute the equilibration matrix R such that
134 *     inv(R)*A*C has unit 1-norm.
135 *
136       IF (NOTRANS) THEN
137          DO I = 1, N
138             TMP = 0.0D+0
139             IF ( CMODE .EQ. 1 ) THEN
140                DO J = 1, N
141                   TMP = TMP + ABS( A( I, J ) * C( J ) )
142                END DO
143             ELSE IF ( CMODE .EQ. 0 ) THEN
144                DO J = 1, N
145                   TMP = TMP + ABS( A( I, J ) )
146                END DO
147             ELSE
148                DO J = 1, N
149                   TMP = TMP + ABS( A( I, J ) / C( J ) )
150                END DO
151             END IF
152             WORK( 2*N+I ) = TMP
153          END DO
154       ELSE
155          DO I = 1, N
156             TMP = 0.0D+0
157             IF ( CMODE .EQ. 1 ) THEN
158                DO J = 1, N
159                   TMP = TMP + ABS( A( J, I ) * C( J ) )
160                END DO
161             ELSE IF ( CMODE .EQ. 0 ) THEN
162                DO J = 1, N
163                   TMP = TMP + ABS( A( J, I ) )
164                END DO
165             ELSE
166                DO J = 1, N
167                   TMP = TMP + ABS( A( J, I ) / C( J ) )
168                END DO
169             END IF
170             WORK( 2*N+I ) = TMP
171          END DO
172       END IF
173 *
174 *     Estimate the norm of inv(op(A)).
175 *
176       AINVNM = 0.0D+0
177 
178       KASE = 0
179    10 CONTINUE
180       CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
181       IF( KASE.NE.0 ) THEN
182          IF( KASE.EQ.2 ) THEN
183 *
184 *           Multiply by R.
185 *
186             DO I = 1, N
187                WORK(I) = WORK(I) * WORK(2*N+I)
188             END DO
189 
190             IF (NOTRANS) THEN
191                CALL DGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
192      $            WORK, N, INFO )
193             ELSE
194                CALL DGETRS( 'Transpose', N, 1, AF, LDAF, IPIV,
195      $            WORK, N, INFO )
196             END IF
197 *
198 *           Multiply by inv(C).
199 *
200             IF ( CMODE .EQ. 1 ) THEN
201                DO I = 1, N
202                   WORK( I ) = WORK( I ) / C( I )
203                END DO
204             ELSE IF ( CMODE .EQ. -1 ) THEN
205                DO I = 1, N
206                   WORK( I ) = WORK( I ) * C( I )
207                END DO
208             END IF
209          ELSE
210 *
211 *           Multiply by inv(C**T).
212 *
213             IF ( CMODE .EQ. 1 ) THEN
214                DO I = 1, N
215                   WORK( I ) = WORK( I ) / C( I )
216                END DO
217             ELSE IF ( CMODE .EQ. -1 ) THEN
218                DO I = 1, N
219                   WORK( I ) = WORK( I ) * C( I )
220                END DO
221             END IF
222 
223             IF (NOTRANS) THEN
224                CALL DGETRS( 'Transpose', N, 1, AF, LDAF, IPIV,
225      $            WORK, N, INFO )
226             ELSE
227                CALL DGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
228      $            WORK, N, INFO )
229             END IF
230 *
231 *           Multiply by R.
232 *
233             DO I = 1, N
234                WORK( I ) = WORK( I ) * WORK( 2*N+I )
235             END DO
236          END IF
237          GO TO 10
238       END IF
239 *
240 *     Compute the estimate of the reciprocal condition number.
241 *
242       IF( AINVNM .NE. 0.0D+0 )
243      $   DLA_GERCOND = ( 1.0D+0 / AINVNM )
244 *
245       RETURN
246 *
247       END