1       SUBROUTINE DLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
  2      $                   LDY )
  3 *
  4 *  -- LAPACK auxiliary routine (version 3.3.1) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *  -- April 2011                                                      --
  8 *
  9 *     .. Scalar Arguments ..
 10       INTEGER            LDA, LDX, LDY, M, N, NB
 11 *     ..
 12 *     .. Array Arguments ..
 13       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAUP( * ),
 14      $                   TAUQ( * ), X( LDX, * ), Y( LDY, * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  DLABRD reduces the first NB rows and columns of a real general
 21 *  m by n matrix A to upper or lower bidiagonal form by an orthogonal
 22 *  transformation Q**T * A * P, and returns the matrices X and Y which
 23 *  are needed to apply the transformation to the unreduced part of A.
 24 *
 25 *  If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
 26 *  bidiagonal form.
 27 *
 28 *  This is an auxiliary routine called by DGEBRD
 29 *
 30 *  Arguments
 31 *  =========
 32 *
 33 *  M       (input) INTEGER
 34 *          The number of rows in the matrix A.
 35 *
 36 *  N       (input) INTEGER
 37 *          The number of columns in the matrix A.
 38 *
 39 *  NB      (input) INTEGER
 40 *          The number of leading rows and columns of A to be reduced.
 41 *
 42 *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
 43 *          On entry, the m by n general matrix to be reduced.
 44 *          On exit, the first NB rows and columns of the matrix are
 45 *          overwritten; the rest of the array is unchanged.
 46 *          If m >= n, elements on and below the diagonal in the first NB
 47 *            columns, with the array TAUQ, represent the orthogonal
 48 *            matrix Q as a product of elementary reflectors; and
 49 *            elements above the diagonal in the first NB rows, with the
 50 *            array TAUP, represent the orthogonal matrix P as a product
 51 *            of elementary reflectors.
 52 *          If m < n, elements below the diagonal in the first NB
 53 *            columns, with the array TAUQ, represent the orthogonal
 54 *            matrix Q as a product of elementary reflectors, and
 55 *            elements on and above the diagonal in the first NB rows,
 56 *            with the array TAUP, represent the orthogonal matrix P as
 57 *            a product of elementary reflectors.
 58 *          See Further Details.
 59 *
 60 *  LDA     (input) INTEGER
 61 *          The leading dimension of the array A.  LDA >= max(1,M).
 62 *
 63 *  D       (output) DOUBLE PRECISION array, dimension (NB)
 64 *          The diagonal elements of the first NB rows and columns of
 65 *          the reduced matrix.  D(i) = A(i,i).
 66 *
 67 *  E       (output) DOUBLE PRECISION array, dimension (NB)
 68 *          The off-diagonal elements of the first NB rows and columns of
 69 *          the reduced matrix.
 70 *
 71 *  TAUQ    (output) DOUBLE PRECISION array dimension (NB)
 72 *          The scalar factors of the elementary reflectors which
 73 *          represent the orthogonal matrix Q. See Further Details.
 74 *
 75 *  TAUP    (output) DOUBLE PRECISION array, dimension (NB)
 76 *          The scalar factors of the elementary reflectors which
 77 *          represent the orthogonal matrix P. See Further Details.
 78 *
 79 *  X       (output) DOUBLE PRECISION array, dimension (LDX,NB)
 80 *          The m-by-nb matrix X required to update the unreduced part
 81 *          of A.
 82 *
 83 *  LDX     (input) INTEGER
 84 *          The leading dimension of the array X. LDX >= max(1,M).
 85 *
 86 *  Y       (output) DOUBLE PRECISION array, dimension (LDY,NB)
 87 *          The n-by-nb matrix Y required to update the unreduced part
 88 *          of A.
 89 *
 90 *  LDY     (input) INTEGER
 91 *          The leading dimension of the array Y. LDY >= max(1,N).
 92 *
 93 *  Further Details
 94 *  ===============
 95 *
 96 *  The matrices Q and P are represented as products of elementary
 97 *  reflectors:
 98 *
 99 *     Q = H(1) H(2) . . . H(nb)  and  P = G(1) G(2) . . . G(nb)
100 *
101 *  Each H(i) and G(i) has the form:
102 *
103 *     H(i) = I - tauq * v * v**T  and G(i) = I - taup * u * u**T
104 *
105 *  where tauq and taup are real scalars, and v and u are real vectors.
106 *
107 *  If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
108 *  A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
109 *  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
110 *
111 *  If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
112 *  A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
113 *  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
114 *
115 *  The elements of the vectors v and u together form the m-by-nb matrix
116 *  V and the nb-by-n matrix U**T which are needed, with X and Y, to apply
117 *  the transformation to the unreduced part of the matrix, using a block
118 *  update of the form:  A := A - V*Y**T - X*U**T.
119 *
120 *  The contents of A on exit are illustrated by the following examples
121 *  with nb = 2:
122 *
123 *  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
124 *
125 *    (  1   1   u1  u1  u1 )           (  1   u1  u1  u1  u1  u1 )
126 *    (  v1  1   1   u2  u2 )           (  1   1   u2  u2  u2  u2 )
127 *    (  v1  v2  a   a   a  )           (  v1  1   a   a   a   a  )
128 *    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
129 *    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
130 *    (  v1  v2  a   a   a  )
131 *
132 *  where a denotes an element of the original matrix which is unchanged,
133 *  vi denotes an element of the vector defining H(i), and ui an element
134 *  of the vector defining G(i).
135 *
136 *  =====================================================================
137 *
138 *     .. Parameters ..
139       DOUBLE PRECISION   ZERO, ONE
140       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
141 *     ..
142 *     .. Local Scalars ..
143       INTEGER            I
144 *     ..
145 *     .. External Subroutines ..
146       EXTERNAL           DGEMV, DLARFG, DSCAL
147 *     ..
148 *     .. Intrinsic Functions ..
149       INTRINSIC          MIN
150 *     ..
151 *     .. Executable Statements ..
152 *
153 *     Quick return if possible
154 *
155       IF( M.LE.0 .OR. N.LE.0 )
156      $   RETURN
157 *
158       IF( M.GE.N ) THEN
159 *
160 *        Reduce to upper bidiagonal form
161 *
162          DO 10 I = 1, NB
163 *
164 *           Update A(i:m,i)
165 *
166             CALL DGEMV( 'No transpose', M-I+1, I-1-ONE, A( I, 1 ),
167      $                  LDA, Y( I, 1 ), LDY, ONE, A( I, I ), 1 )
168             CALL DGEMV( 'No transpose', M-I+1, I-1-ONE, X( I, 1 ),
169      $                  LDX, A( 1, I ), 1, ONE, A( I, I ), 1 )
170 *
171 *           Generate reflection Q(i) to annihilate A(i+1:m,i)
172 *
173             CALL DLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
174      $                   TAUQ( I ) )
175             D( I ) = A( I, I )
176             IF( I.LT.N ) THEN
177                A( I, I ) = ONE
178 *
179 *              Compute Y(i+1:n,i)
180 *
181                CALL DGEMV( 'Transpose', M-I+1, N-I, ONE, A( I, I+1 ),
182      $                     LDA, A( I, I ), 1, ZERO, Y( I+1, I ), 1 )
183                CALL DGEMV( 'Transpose', M-I+1, I-1, ONE, A( I, 1 ), LDA,
184      $                     A( I, I ), 1, ZERO, Y( 1, I ), 1 )
185                CALL DGEMV( 'No transpose', N-I, I-1-ONE, Y( I+11 ),
186      $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
187                CALL DGEMV( 'Transpose', M-I+1, I-1, ONE, X( I, 1 ), LDX,
188      $                     A( I, I ), 1, ZERO, Y( 1, I ), 1 )
189                CALL DGEMV( 'Transpose', I-1, N-I, -ONE, A( 1, I+1 ),
190      $                     LDA, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
191                CALL DSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
192 *
193 *              Update A(i,i+1:n)
194 *
195                CALL DGEMV( 'No transpose', N-I, I, -ONE, Y( I+11 ),
196      $                     LDY, A( I, 1 ), LDA, ONE, A( I, I+1 ), LDA )
197                CALL DGEMV( 'Transpose', I-1, N-I, -ONE, A( 1, I+1 ),
198      $                     LDA, X( I, 1 ), LDX, ONE, A( I, I+1 ), LDA )
199 *
200 *              Generate reflection P(i) to annihilate A(i,i+2:n)
201 *
202                CALL DLARFG( N-I, A( I, I+1 ), A( I, MIN( I+2, N ) ),
203      $                      LDA, TAUP( I ) )
204                E( I ) = A( I, I+1 )
205                A( I, I+1 ) = ONE
206 *
207 *              Compute X(i+1:m,i)
208 *
209                CALL DGEMV( 'No transpose', M-I, N-I, ONE, A( I+1, I+1 ),
210      $                     LDA, A( I, I+1 ), LDA, ZERO, X( I+1, I ), 1 )
211                CALL DGEMV( 'Transpose', N-I, I, ONE, Y( I+11 ), LDY,
212      $                     A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
213                CALL DGEMV( 'No transpose', M-I, I, -ONE, A( I+11 ),
214      $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
215                CALL DGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
216      $                     LDA, A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
217                CALL DGEMV( 'No transpose', M-I, I-1-ONE, X( I+11 ),
218      $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
219                CALL DSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
220             END IF
221    10    CONTINUE
222       ELSE
223 *
224 *        Reduce to lower bidiagonal form
225 *
226          DO 20 I = 1, NB
227 *
228 *           Update A(i,i:n)
229 *
230             CALL DGEMV( 'No transpose', N-I+1, I-1-ONE, Y( I, 1 ),
231      $                  LDY, A( I, 1 ), LDA, ONE, A( I, I ), LDA )
232             CALL DGEMV( 'Transpose', I-1, N-I+1-ONE, A( 1, I ), LDA,
233      $                  X( I, 1 ), LDX, ONE, A( I, I ), LDA )
234 *
235 *           Generate reflection P(i) to annihilate A(i,i+1:n)
236 *
237             CALL DLARFG( N-I+1, A( I, I ), A( I, MIN( I+1, N ) ), LDA,
238      $                   TAUP( I ) )
239             D( I ) = A( I, I )
240             IF( I.LT.M ) THEN
241                A( I, I ) = ONE
242 *
243 *              Compute X(i+1:m,i)
244 *
245                CALL DGEMV( 'No transpose', M-I, N-I+1, ONE, A( I+1, I ),
246      $                     LDA, A( I, I ), LDA, ZERO, X( I+1, I ), 1 )
247                CALL DGEMV( 'Transpose', N-I+1, I-1, ONE, Y( I, 1 ), LDY,
248      $                     A( I, I ), LDA, ZERO, X( 1, I ), 1 )
249                CALL DGEMV( 'No transpose', M-I, I-1-ONE, A( I+11 ),
250      $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
251                CALL DGEMV( 'No transpose', I-1, N-I+1, ONE, A( 1, I ),
252      $                     LDA, A( I, I ), LDA, ZERO, X( 1, I ), 1 )
253                CALL DGEMV( 'No transpose', M-I, I-1-ONE, X( I+11 ),
254      $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
255                CALL DSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
256 *
257 *              Update A(i+1:m,i)
258 *
259                CALL DGEMV( 'No transpose', M-I, I-1-ONE, A( I+11 ),
260      $                     LDA, Y( I, 1 ), LDY, ONE, A( I+1, I ), 1 )
261                CALL DGEMV( 'No transpose', M-I, I, -ONE, X( I+11 ),
262      $                     LDX, A( 1, I ), 1, ONE, A( I+1, I ), 1 )
263 *
264 *              Generate reflection Q(i) to annihilate A(i+2:m,i)
265 *
266                CALL DLARFG( M-I, A( I+1, I ), A( MIN( I+2, M ), I ), 1,
267      $                      TAUQ( I ) )
268                E( I ) = A( I+1, I )
269                A( I+1, I ) = ONE
270 *
271 *              Compute Y(i+1:n,i)
272 *
273                CALL DGEMV( 'Transpose', M-I, N-I, ONE, A( I+1, I+1 ),
274      $                     LDA, A( I+1, I ), 1, ZERO, Y( I+1, I ), 1 )
275                CALL DGEMV( 'Transpose', M-I, I-1, ONE, A( I+11 ), LDA,
276      $                     A( I+1, I ), 1, ZERO, Y( 1, I ), 1 )
277                CALL DGEMV( 'No transpose', N-I, I-1-ONE, Y( I+11 ),
278      $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
279                CALL DGEMV( 'Transpose', M-I, I, ONE, X( I+11 ), LDX,
280      $                     A( I+1, I ), 1, ZERO, Y( 1, I ), 1 )
281                CALL DGEMV( 'Transpose', I, N-I, -ONE, A( 1, I+1 ), LDA,
282      $                     Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
283                CALL DSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
284             END IF
285    20    CONTINUE
286       END IF
287       RETURN
288 *
289 *     End of DLABRD
290 *
291       END