1       SUBROUTINE DLAED5( I, D, Z, DELTA, RHO, DLAM )
  2 *
  3 *  -- LAPACK routine (version 3.2) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       INTEGER            I
 10       DOUBLE PRECISION   DLAM, RHO
 11 *     ..
 12 *     .. Array Arguments ..
 13       DOUBLE PRECISION   D( 2 ), DELTA( 2 ), Z( 2 )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  This subroutine computes the I-th eigenvalue of a symmetric rank-one
 20 *  modification of a 2-by-2 diagonal matrix
 21 *
 22 *             diag( D )  +  RHO *  Z * transpose(Z) .
 23 *
 24 *  The diagonal elements in the array D are assumed to satisfy
 25 *
 26 *             D(i) < D(j)  for  i < j .
 27 *
 28 *  We also assume RHO > 0 and that the Euclidean norm of the vector
 29 *  Z is one.
 30 *
 31 *  Arguments
 32 *  =========
 33 *
 34 *  I      (input) INTEGER
 35 *         The index of the eigenvalue to be computed.  I = 1 or I = 2.
 36 *
 37 *  D      (input) DOUBLE PRECISION array, dimension (2)
 38 *         The original eigenvalues.  We assume D(1) < D(2).
 39 *
 40 *  Z      (input) DOUBLE PRECISION array, dimension (2)
 41 *         The components of the updating vector.
 42 *
 43 *  DELTA  (output) DOUBLE PRECISION array, dimension (2)
 44 *         The vector DELTA contains the information necessary
 45 *         to construct the eigenvectors.
 46 *
 47 *  RHO    (input) DOUBLE PRECISION
 48 *         The scalar in the symmetric updating formula.
 49 *
 50 *  DLAM   (output) DOUBLE PRECISION
 51 *         The computed lambda_I, the I-th updated eigenvalue.
 52 *
 53 *  Further Details
 54 *  ===============
 55 *
 56 *  Based on contributions by
 57 *     Ren-Cang Li, Computer Science Division, University of California
 58 *     at Berkeley, USA
 59 *
 60 *  =====================================================================
 61 *
 62 *     .. Parameters ..
 63       DOUBLE PRECISION   ZERO, ONE, TWO, FOUR
 64       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
 65      $                   FOUR = 4.0D0 )
 66 *     ..
 67 *     .. Local Scalars ..
 68       DOUBLE PRECISION   B, C, DEL, TAU, TEMP, W
 69 *     ..
 70 *     .. Intrinsic Functions ..
 71       INTRINSIC          ABSSQRT
 72 *     ..
 73 *     .. Executable Statements ..
 74 *
 75       DEL = D( 2 ) - D( 1 )
 76       IF( I.EQ.1 ) THEN
 77          W = ONE + TWO*RHO*( Z( 2 )*Z( 2 )-Z( 1 )*Z( 1 ) ) / DEL
 78          IF( W.GT.ZERO ) THEN
 79             B = DEL + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
 80             C = RHO*Z( 1 )*Z( 1 )*DEL
 81 *
 82 *           B > ZERO, always
 83 *
 84             TAU = TWO*/ ( B+SQRTABS( B*B-FOUR*C ) ) )
 85             DLAM = D( 1 ) + TAU
 86             DELTA( 1 ) = -Z( 1 ) / TAU
 87             DELTA( 2 ) = Z( 2 ) / ( DEL-TAU )
 88          ELSE
 89             B = -DEL + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
 90             C = RHO*Z( 2 )*Z( 2 )*DEL
 91             IF( B.GT.ZERO ) THEN
 92                TAU = -TWO*/ ( B+SQRT( B*B+FOUR*C ) )
 93             ELSE
 94                TAU = ( B-SQRT( B*B+FOUR*C ) ) / TWO
 95             END IF
 96             DLAM = D( 2 ) + TAU
 97             DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
 98             DELTA( 2 ) = -Z( 2 ) / TAU
 99          END IF
100          TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
101          DELTA( 1 ) = DELTA( 1 ) / TEMP
102          DELTA( 2 ) = DELTA( 2 ) / TEMP
103       ELSE
104 *
105 *     Now I=2
106 *
107          B = -DEL + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
108          C = RHO*Z( 2 )*Z( 2 )*DEL
109          IF( B.GT.ZERO ) THEN
110             TAU = ( B+SQRT( B*B+FOUR*C ) ) / TWO
111          ELSE
112             TAU = TWO*/ ( -B+SQRT( B*B+FOUR*C ) )
113          END IF
114          DLAM = D( 2 ) + TAU
115          DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
116          DELTA( 2 ) = -Z( 2 ) / TAU
117          TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
118          DELTA( 1 ) = DELTA( 1 ) / TEMP
119          DELTA( 2 ) = DELTA( 2 ) / TEMP
120       END IF
121       RETURN
122 *
123 *     End OF DLAED5
124 *
125       END