1       SUBROUTINE DLAED9( K, KSTART, KSTOP, N, D, Q, LDQ, RHO, DLAMDA, W,
  2      $                   S, LDS, INFO )
  3 *
  4 *  -- LAPACK routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       INTEGER            INFO, K, KSTART, KSTOP, LDQ, LDS, N
 11       DOUBLE PRECISION   RHO
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), S( LDS, * ),
 15      $                   W( * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  DLAED9 finds the roots of the secular equation, as defined by the
 22 *  values in D, Z, and RHO, between KSTART and KSTOP.  It makes the
 23 *  appropriate calls to DLAED4 and then stores the new matrix of
 24 *  eigenvectors for use in calculating the next level of Z vectors.
 25 *
 26 *  Arguments
 27 *  =========
 28 *
 29 *  K       (input) INTEGER
 30 *          The number of terms in the rational function to be solved by
 31 *          DLAED4.  K >= 0.
 32 *
 33 *  KSTART  (input) INTEGER
 34 *  KSTOP   (input) INTEGER
 35 *          The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP
 36 *          are to be computed.  1 <= KSTART <= KSTOP <= K.
 37 *
 38 *  N       (input) INTEGER
 39 *          The number of rows and columns in the Q matrix.
 40 *          N >= K (delation may result in N > K).
 41 *
 42 *  D       (output) DOUBLE PRECISION array, dimension (N)
 43 *          D(I) contains the updated eigenvalues
 44 *          for KSTART <= I <= KSTOP.
 45 *
 46 *  Q       (workspace) DOUBLE PRECISION array, dimension (LDQ,N)
 47 *
 48 *  LDQ     (input) INTEGER
 49 *          The leading dimension of the array Q.  LDQ >= max( 1, N ).
 50 *
 51 *  RHO     (input) DOUBLE PRECISION
 52 *          The value of the parameter in the rank one update equation.
 53 *          RHO >= 0 required.
 54 *
 55 *  DLAMDA  (input) DOUBLE PRECISION array, dimension (K)
 56 *          The first K elements of this array contain the old roots
 57 *          of the deflated updating problem.  These are the poles
 58 *          of the secular equation.
 59 *
 60 *  W       (input) DOUBLE PRECISION array, dimension (K)
 61 *          The first K elements of this array contain the components
 62 *          of the deflation-adjusted updating vector.
 63 *
 64 *  S       (output) DOUBLE PRECISION array, dimension (LDS, K)
 65 *          Will contain the eigenvectors of the repaired matrix which
 66 *          will be stored for subsequent Z vector calculation and
 67 *          multiplied by the previously accumulated eigenvectors
 68 *          to update the system.
 69 *
 70 *  LDS     (input) INTEGER
 71 *          The leading dimension of S.  LDS >= max( 1, K ).
 72 *
 73 *  INFO    (output) INTEGER
 74 *          = 0:  successful exit.
 75 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
 76 *          > 0:  if INFO = 1, an eigenvalue did not converge
 77 *
 78 *  Further Details
 79 *  ===============
 80 *
 81 *  Based on contributions by
 82 *     Jeff Rutter, Computer Science Division, University of California
 83 *     at Berkeley, USA
 84 *
 85 *  =====================================================================
 86 *
 87 *     .. Local Scalars ..
 88       INTEGER            I, J
 89       DOUBLE PRECISION   TEMP
 90 *     ..
 91 *     .. External Functions ..
 92       DOUBLE PRECISION   DLAMC3, DNRM2
 93       EXTERNAL           DLAMC3, DNRM2
 94 *     ..
 95 *     .. External Subroutines ..
 96       EXTERNAL           DCOPY, DLAED4, XERBLA
 97 *     ..
 98 *     .. Intrinsic Functions ..
 99       INTRINSIC          MAXSIGNSQRT
100 *     ..
101 *     .. Executable Statements ..
102 *
103 *     Test the input parameters.
104 *
105       INFO = 0
106 *
107       IF( K.LT.0 ) THEN
108          INFO = -1
109       ELSE IF( KSTART.LT.1 .OR. KSTART.GT.MAX1, K ) ) THEN
110          INFO = -2
111       ELSE IFMAX1, KSTOP ).LT.KSTART .OR. KSTOP.GT.MAX1, K ) )
112      $          THEN
113          INFO = -3
114       ELSE IF( N.LT.K ) THEN
115          INFO = -4
116       ELSE IF( LDQ.LT.MAX1, K ) ) THEN
117          INFO = -7
118       ELSE IF( LDS.LT.MAX1, K ) ) THEN
119          INFO = -12
120       END IF
121       IF( INFO.NE.0 ) THEN
122          CALL XERBLA( 'DLAED9'-INFO )
123          RETURN
124       END IF
125 *
126 *     Quick return if possible
127 *
128       IF( K.EQ.0 )
129      $   RETURN
130 *
131 *     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can
132 *     be computed with high relative accuracy (barring over/underflow).
133 *     This is a problem on machines without a guard digit in
134 *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
135 *     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),
136 *     which on any of these machines zeros out the bottommost
137 *     bit of DLAMDA(I) if it is 1; this makes the subsequent
138 *     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation
139 *     occurs. On binary machines with a guard digit (almost all
140 *     machines) it does not change DLAMDA(I) at all. On hexadecimal
141 *     and decimal machines with a guard digit, it slightly
142 *     changes the bottommost bits of DLAMDA(I). It does not account
143 *     for hexadecimal or decimal machines without guard digits
144 *     (we know of none). We use a subroutine call to compute
145 *     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
146 *     this code.
147 *
148       DO 10 I = 1, N
149          DLAMDA( I ) = DLAMC3( DLAMDA( I ), DLAMDA( I ) ) - DLAMDA( I )
150    10 CONTINUE
151 *
152       DO 20 J = KSTART, KSTOP
153          CALL DLAED4( K, J, DLAMDA, W, Q( 1, J ), RHO, D( J ), INFO )
154 *
155 *        If the zero finder fails, the computation is terminated.
156 *
157          IF( INFO.NE.0 )
158      $      GO TO 120
159    20 CONTINUE
160 *
161       IF( K.EQ.1 .OR. K.EQ.2 ) THEN
162          DO 40 I = 1, K
163             DO 30 J = 1, K
164                S( J, I ) = Q( J, I )
165    30       CONTINUE
166    40    CONTINUE
167          GO TO 120
168       END IF
169 *
170 *     Compute updated W.
171 *
172       CALL DCOPY( K, W, 1, S, 1 )
173 *
174 *     Initialize W(I) = Q(I,I)
175 *
176       CALL DCOPY( K, Q, LDQ+1, W, 1 )
177       DO 70 J = 1, K
178          DO 50 I = 1, J - 1
179             W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
180    50    CONTINUE
181          DO 60 I = J + 1, K
182             W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
183    60    CONTINUE
184    70 CONTINUE
185       DO 80 I = 1, K
186          W( I ) = SIGNSQRT-W( I ) ), S( I, 1 ) )
187    80 CONTINUE
188 *
189 *     Compute eigenvectors of the modified rank-1 modification.
190 *
191       DO 110 J = 1, K
192          DO 90 I = 1, K
193             Q( I, J ) = W( I ) / Q( I, J )
194    90    CONTINUE
195          TEMP = DNRM2( K, Q( 1, J ), 1 )
196          DO 100 I = 1, K
197             S( I, J ) = Q( I, J ) / TEMP
198   100    CONTINUE
199   110 CONTINUE
200 *
201   120 CONTINUE
202       RETURN
203 *
204 *     End of DLAED9
205 *
206       END