1       SUBROUTINE DLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,
  2      $                   GIVCOL, GIVNUM, Q, QPTR, Z, ZTEMP, INFO )
  3 *
  4 *  -- LAPACK routine (version 3.2.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     June 2010
  8 *
  9 *     .. Scalar Arguments ..
 10       INTEGER            CURLVL, CURPBM, INFO, N, TLVLS
 11 *     ..
 12 *     .. Array Arguments ..
 13       INTEGER            GIVCOL( 2* ), GIVPTR( * ), PERM( * ),
 14      $                   PRMPTR( * ), QPTR( * )
 15       DOUBLE PRECISION   GIVNUM( 2* ), Q( * ), Z( * ), ZTEMP( * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  DLAEDA computes the Z vector corresponding to the merge step in the
 22 *  CURLVLth step of the merge process with TLVLS steps for the CURPBMth
 23 *  problem.
 24 *
 25 *  Arguments
 26 *  =========
 27 *
 28 *  N      (input) INTEGER
 29 *         The dimension of the symmetric tridiagonal matrix.  N >= 0.
 30 *
 31 *  TLVLS  (input) INTEGER
 32 *         The total number of merging levels in the overall divide and
 33 *         conquer tree.
 34 *
 35 *  CURLVL (input) INTEGER
 36 *         The current level in the overall merge routine,
 37 *         0 <= curlvl <= tlvls.
 38 *
 39 *  CURPBM (input) INTEGER
 40 *         The current problem in the current level in the overall
 41 *         merge routine (counting from upper left to lower right).
 42 *
 43 *  PRMPTR (input) INTEGER array, dimension (N lg N)
 44 *         Contains a list of pointers which indicate where in PERM a
 45 *         level's permutation is stored.  PRMPTR(i+1) - PRMPTR(i)
 46 *         indicates the size of the permutation and incidentally the
 47 *         size of the full, non-deflated problem.
 48 *
 49 *  PERM   (input) INTEGER array, dimension (N lg N)
 50 *         Contains the permutations (from deflation and sorting) to be
 51 *         applied to each eigenblock.
 52 *
 53 *  GIVPTR (input) INTEGER array, dimension (N lg N)
 54 *         Contains a list of pointers which indicate where in GIVCOL a
 55 *         level's Givens rotations are stored.  GIVPTR(i+1) - GIVPTR(i)
 56 *         indicates the number of Givens rotations.
 57 *
 58 *  GIVCOL (input) INTEGER array, dimension (2, N lg N)
 59 *         Each pair of numbers indicates a pair of columns to take place
 60 *         in a Givens rotation.
 61 *
 62 *  GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N)
 63 *         Each number indicates the S value to be used in the
 64 *         corresponding Givens rotation.
 65 *
 66 *  Q      (input) DOUBLE PRECISION array, dimension (N**2)
 67 *         Contains the square eigenblocks from previous levels, the
 68 *         starting positions for blocks are given by QPTR.
 69 *
 70 *  QPTR   (input) INTEGER array, dimension (N+2)
 71 *         Contains a list of pointers which indicate where in Q an
 72 *         eigenblock is stored.  SQRT( QPTR(i+1) - QPTR(i) ) indicates
 73 *         the size of the block.
 74 *
 75 *  Z      (output) DOUBLE PRECISION array, dimension (N)
 76 *         On output this vector contains the updating vector (the last
 77 *         row of the first sub-eigenvector matrix and the first row of
 78 *         the second sub-eigenvector matrix).
 79 *
 80 *  ZTEMP  (workspace) DOUBLE PRECISION array, dimension (N)
 81 *
 82 *  INFO   (output) INTEGER
 83 *          = 0:  successful exit.
 84 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
 85 *
 86 *  Further Details
 87 *  ===============
 88 *
 89 *  Based on contributions by
 90 *     Jeff Rutter, Computer Science Division, University of California
 91 *     at Berkeley, USA
 92 *
 93 *  =====================================================================
 94 *
 95 *     .. Parameters ..
 96       DOUBLE PRECISION   ZERO, HALF, ONE
 97       PARAMETER          ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0 )
 98 *     ..
 99 *     .. Local Scalars ..
100       INTEGER            BSIZ1, BSIZ2, CURR, I, K, MID, PSIZ1, PSIZ2,
101      $                   PTR, ZPTR1
102 *     ..
103 *     .. External Subroutines ..
104       EXTERNAL           DCOPY, DGEMV, DROT, XERBLA
105 *     ..
106 *     .. Intrinsic Functions ..
107       INTRINSIC          DBLEINTSQRT
108 *     ..
109 *     .. Executable Statements ..
110 *
111 *     Test the input parameters.
112 *
113       INFO = 0
114 *
115       IF( N.LT.0 ) THEN
116          INFO = -1
117       END IF
118       IF( INFO.NE.0 ) THEN
119          CALL XERBLA( 'DLAEDA'-INFO )
120          RETURN
121       END IF
122 *
123 *     Quick return if possible
124 *
125       IF( N.EQ.0 )
126      $   RETURN
127 *
128 *     Determine location of first number in second half.
129 *
130       MID = N / 2 + 1
131 *
132 *     Gather last/first rows of appropriate eigenblocks into center of Z
133 *
134       PTR = 1
135 *
136 *     Determine location of lowest level subproblem in the full storage
137 *     scheme
138 *
139       CURR = PTR + CURPBM*2**CURLVL + 2**( CURLVL-1 ) - 1
140 *
141 *     Determine size of these matrices.  We add HALF to the value of
142 *     the SQRT in case the machine underestimates one of these square
143 *     roots.
144 *
145       BSIZ1 = INT( HALF+SQRTDBLE( QPTR( CURR+1 )-QPTR( CURR ) ) ) )
146       BSIZ2 = INT( HALF+SQRTDBLE( QPTR( CURR+2 )-QPTR( CURR+1 ) ) ) )
147       DO 10 K = 1, MID - BSIZ1 - 1
148          Z( K ) = ZERO
149    10 CONTINUE
150       CALL DCOPY( BSIZ1, Q( QPTR( CURR )+BSIZ1-1 ), BSIZ1,
151      $            Z( MID-BSIZ1 ), 1 )
152       CALL DCOPY( BSIZ2, Q( QPTR( CURR+1 ) ), BSIZ2, Z( MID ), 1 )
153       DO 20 K = MID + BSIZ2, N
154          Z( K ) = ZERO
155    20 CONTINUE
156 *
157 *     Loop through remaining levels 1 -> CURLVL applying the Givens
158 *     rotations and permutation and then multiplying the center matrices
159 *     against the current Z.
160 *
161       PTR = 2**TLVLS + 1
162       DO 70 K = 1, CURLVL - 1
163          CURR = PTR + CURPBM*2**( CURLVL-K ) + 2**( CURLVL-K-1 ) - 1
164          PSIZ1 = PRMPTR( CURR+1 ) - PRMPTR( CURR )
165          PSIZ2 = PRMPTR( CURR+2 ) - PRMPTR( CURR+1 )
166          ZPTR1 = MID - PSIZ1
167 *
168 *       Apply Givens at CURR and CURR+1
169 *
170          DO 30 I = GIVPTR( CURR ), GIVPTR( CURR+1 ) - 1
171             CALL DROT( 1, Z( ZPTR1+GIVCOL( 1, I )-1 ), 1,
172      $                 Z( ZPTR1+GIVCOL( 2, I )-1 ), 1, GIVNUM( 1, I ),
173      $                 GIVNUM( 2, I ) )
174    30    CONTINUE
175          DO 40 I = GIVPTR( CURR+1 ), GIVPTR( CURR+2 ) - 1
176             CALL DROT( 1, Z( MID-1+GIVCOL( 1, I ) ), 1,
177      $                 Z( MID-1+GIVCOL( 2, I ) ), 1, GIVNUM( 1, I ),
178      $                 GIVNUM( 2, I ) )
179    40    CONTINUE
180          PSIZ1 = PRMPTR( CURR+1 ) - PRMPTR( CURR )
181          PSIZ2 = PRMPTR( CURR+2 ) - PRMPTR( CURR+1 )
182          DO 50 I = 0, PSIZ1 - 1
183             ZTEMP( I+1 ) = Z( ZPTR1+PERM( PRMPTR( CURR )+I )-1 )
184    50    CONTINUE
185          DO 60 I = 0, PSIZ2 - 1
186             ZTEMP( PSIZ1+I+1 ) = Z( MID+PERM( PRMPTR( CURR+1 )+I )-1 )
187    60    CONTINUE
188 *
189 *        Multiply Blocks at CURR and CURR+1
190 *
191 *        Determine size of these matrices.  We add HALF to the value of
192 *        the SQRT in case the machine underestimates one of these
193 *        square roots.
194 *
195          BSIZ1 = INT( HALF+SQRTDBLE( QPTR( CURR+1 )-QPTR( CURR ) ) ) )
196          BSIZ2 = INT( HALF+SQRTDBLE( QPTR( CURR+2 )-QPTR( CURR+
197      $           1 ) ) ) )
198          IF( BSIZ1.GT.0 ) THEN
199             CALL DGEMV( 'T', BSIZ1, BSIZ1, ONE, Q( QPTR( CURR ) ),
200      $                  BSIZ1, ZTEMP( 1 ), 1, ZERO, Z( ZPTR1 ), 1 )
201          END IF
202          CALL DCOPY( PSIZ1-BSIZ1, ZTEMP( BSIZ1+1 ), 1, Z( ZPTR1+BSIZ1 ),
203      $               1 )
204          IF( BSIZ2.GT.0 ) THEN
205             CALL DGEMV( 'T', BSIZ2, BSIZ2, ONE, Q( QPTR( CURR+1 ) ),
206      $                  BSIZ2, ZTEMP( PSIZ1+1 ), 1, ZERO, Z( MID ), 1 )
207          END IF
208          CALL DCOPY( PSIZ2-BSIZ2, ZTEMP( PSIZ1+BSIZ2+1 ), 1,
209      $               Z( MID+BSIZ2 ), 1 )
210 *
211          PTR = PTR + 2**( TLVLS-K )
212    70 CONTINUE
213 *
214       RETURN
215 *
216 *     End of DLAEDA
217 *
218       END