1       SUBROUTINE DLAEIN( RIGHTV, NOINIT, N, H, LDH, WR, WI, VR, VI, B,
  2      $                   LDB, WORK, EPS3, SMLNUM, BIGNUM, INFO )
  3 *
  4 *  -- LAPACK auxiliary routine (version 3.3.1) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *  -- April 2011                                                      --
  8 *
  9 *     .. Scalar Arguments ..
 10       LOGICAL            NOINIT, RIGHTV
 11       INTEGER            INFO, LDB, LDH, N
 12       DOUBLE PRECISION   BIGNUM, EPS3, SMLNUM, WI, WR
 13 *     ..
 14 *     .. Array Arguments ..
 15       DOUBLE PRECISION   B( LDB, * ), H( LDH, * ), VI( * ), VR( * ),
 16      $                   WORK( * )
 17 *     ..
 18 *
 19 *  Purpose
 20 *  =======
 21 *
 22 *  DLAEIN uses inverse iteration to find a right or left eigenvector
 23 *  corresponding to the eigenvalue (WR,WI) of a real upper Hessenberg
 24 *  matrix H.
 25 *
 26 *  Arguments
 27 *  =========
 28 *
 29 *  RIGHTV  (input) LOGICAL
 30 *          = .TRUE. : compute right eigenvector;
 31 *          = .FALSE.: compute left eigenvector.
 32 *
 33 *  NOINIT  (input) LOGICAL
 34 *          = .TRUE. : no initial vector supplied in (VR,VI).
 35 *          = .FALSE.: initial vector supplied in (VR,VI).
 36 *
 37 *  N       (input) INTEGER
 38 *          The order of the matrix H.  N >= 0.
 39 *
 40 *  H       (input) DOUBLE PRECISION array, dimension (LDH,N)
 41 *          The upper Hessenberg matrix H.
 42 *
 43 *  LDH     (input) INTEGER
 44 *          The leading dimension of the array H.  LDH >= max(1,N).
 45 *
 46 *  WR      (input) DOUBLE PRECISION
 47 *  WI      (input) DOUBLE PRECISION
 48 *          The real and imaginary parts of the eigenvalue of H whose
 49 *          corresponding right or left eigenvector is to be computed.
 50 *
 51 *  VR      (input/output) DOUBLE PRECISION array, dimension (N)
 52 *  VI      (input/output) DOUBLE PRECISION array, dimension (N)
 53 *          On entry, if NOINIT = .FALSE. and WI = 0.0, VR must contain
 54 *          a real starting vector for inverse iteration using the real
 55 *          eigenvalue WR; if NOINIT = .FALSE. and WI.ne.0.0, VR and VI
 56 *          must contain the real and imaginary parts of a complex
 57 *          starting vector for inverse iteration using the complex
 58 *          eigenvalue (WR,WI); otherwise VR and VI need not be set.
 59 *          On exit, if WI = 0.0 (real eigenvalue), VR contains the
 60 *          computed real eigenvector; if WI.ne.0.0 (complex eigenvalue),
 61 *          VR and VI contain the real and imaginary parts of the
 62 *          computed complex eigenvector. The eigenvector is normalized
 63 *          so that the component of largest magnitude has magnitude 1;
 64 *          here the magnitude of a complex number (x,y) is taken to be
 65 *          |x| + |y|.
 66 *          VI is not referenced if WI = 0.0.
 67 *
 68 *  B       (workspace) DOUBLE PRECISION array, dimension (LDB,N)
 69 *
 70 *  LDB     (input) INTEGER
 71 *          The leading dimension of the array B.  LDB >= N+1.
 72 *
 73 *  WORK    (workspace) DOUBLE PRECISION array, dimension (N)
 74 *
 75 *  EPS3    (input) DOUBLE PRECISION
 76 *          A small machine-dependent value which is used to perturb
 77 *          close eigenvalues, and to replace zero pivots.
 78 *
 79 *  SMLNUM  (input) DOUBLE PRECISION
 80 *          A machine-dependent value close to the underflow threshold.
 81 *
 82 *  BIGNUM  (input) DOUBLE PRECISION
 83 *          A machine-dependent value close to the overflow threshold.
 84 *
 85 *  INFO    (output) INTEGER
 86 *          = 0:  successful exit
 87 *          = 1:  inverse iteration did not converge; VR is set to the
 88 *                last iterate, and so is VI if WI.ne.0.0.
 89 *
 90 *  =====================================================================
 91 *
 92 *     .. Parameters ..
 93       DOUBLE PRECISION   ZERO, ONE, TENTH
 94       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TENTH = 1.0D-1 )
 95 *     ..
 96 *     .. Local Scalars ..
 97       CHARACTER          NORMIN, TRANS
 98       INTEGER            I, I1, I2, I3, IERR, ITS, J
 99       DOUBLE PRECISION   ABSBII, ABSBJJ, EI, EJ, GROWTO, NORM, NRMSML,
100      $                   REC, ROOTN, SCALE, TEMP, VCRIT, VMAX, VNORM, W,
101      $                   W1, X, XI, XR, Y
102 *     ..
103 *     .. External Functions ..
104       INTEGER            IDAMAX
105       DOUBLE PRECISION   DASUM, DLAPY2, DNRM2
106       EXTERNAL           IDAMAX, DASUM, DLAPY2, DNRM2
107 *     ..
108 *     .. External Subroutines ..
109       EXTERNAL           DLADIV, DLATRS, DSCAL
110 *     ..
111 *     .. Intrinsic Functions ..
112       INTRINSIC          ABSDBLEMAXSQRT
113 *     ..
114 *     .. Executable Statements ..
115 *
116       INFO = 0
117 *
118 *     GROWTO is the threshold used in the acceptance test for an
119 *     eigenvector.
120 *
121       ROOTN = SQRTDBLE( N ) )
122       GROWTO = TENTH / ROOTN
123       NRMSML = MAX( ONE, EPS3*ROOTN )*SMLNUM
124 *
125 *     Form B = H - (WR,WI)*I (except that the subdiagonal elements and
126 *     the imaginary parts of the diagonal elements are not stored).
127 *
128       DO 20 J = 1, N
129          DO 10 I = 1, J - 1
130             B( I, J ) = H( I, J )
131    10    CONTINUE
132          B( J, J ) = H( J, J ) - WR
133    20 CONTINUE
134 *
135       IF( WI.EQ.ZERO ) THEN
136 *
137 *        Real eigenvalue.
138 *
139          IF( NOINIT ) THEN
140 *
141 *           Set initial vector.
142 *
143             DO 30 I = 1, N
144                VR( I ) = EPS3
145    30       CONTINUE
146          ELSE
147 *
148 *           Scale supplied initial vector.
149 *
150             VNORM = DNRM2( N, VR, 1 )
151             CALL DSCAL( N, ( EPS3*ROOTN ) / MAX( VNORM, NRMSML ), VR,
152      $                  1 )
153          END IF
154 *
155          IF( RIGHTV ) THEN
156 *
157 *           LU decomposition with partial pivoting of B, replacing zero
158 *           pivots by EPS3.
159 *
160             DO 60 I = 1, N - 1
161                EI = H( I+1, I )
162                IFABS( B( I, I ) ).LT.ABS( EI ) ) THEN
163 *
164 *                 Interchange rows and eliminate.
165 *
166                   X = B( I, I ) / EI
167                   B( I, I ) = EI
168                   DO 40 J = I + 1, N
169                      TEMP = B( I+1, J )
170                      B( I+1, J ) = B( I, J ) - X*TEMP
171                      B( I, J ) = TEMP
172    40             CONTINUE
173                ELSE
174 *
175 *                 Eliminate without interchange.
176 *
177                   IF( B( I, I ).EQ.ZERO )
178      $               B( I, I ) = EPS3
179                   X = EI / B( I, I )
180                   IF( X.NE.ZERO ) THEN
181                      DO 50 J = I + 1, N
182                         B( I+1, J ) = B( I+1, J ) - X*B( I, J )
183    50                CONTINUE
184                   END IF
185                END IF
186    60       CONTINUE
187             IF( B( N, N ).EQ.ZERO )
188      $         B( N, N ) = EPS3
189 *
190             TRANS = 'N'
191 *
192          ELSE
193 *
194 *           UL decomposition with partial pivoting of B, replacing zero
195 *           pivots by EPS3.
196 *
197             DO 90 J = N, 2-1
198                EJ = H( J, J-1 )
199                IFABS( B( J, J ) ).LT.ABS( EJ ) ) THEN
200 *
201 *                 Interchange columns and eliminate.
202 *
203                   X = B( J, J ) / EJ
204                   B( J, J ) = EJ
205                   DO 70 I = 1, J - 1
206                      TEMP = B( I, J-1 )
207                      B( I, J-1 ) = B( I, J ) - X*TEMP
208                      B( I, J ) = TEMP
209    70             CONTINUE
210                ELSE
211 *
212 *                 Eliminate without interchange.
213 *
214                   IF( B( J, J ).EQ.ZERO )
215      $               B( J, J ) = EPS3
216                   X = EJ / B( J, J )
217                   IF( X.NE.ZERO ) THEN
218                      DO 80 I = 1, J - 1
219                         B( I, J-1 ) = B( I, J-1 ) - X*B( I, J )
220    80                CONTINUE
221                   END IF
222                END IF
223    90       CONTINUE
224             IF( B( 11 ).EQ.ZERO )
225      $         B( 11 ) = EPS3
226 *
227             TRANS = 'T'
228 *
229          END IF
230 *
231          NORMIN = 'N'
232          DO 110 ITS = 1, N
233 *
234 *           Solve U*x = scale*v for a right eigenvector
235 *             or U**T*x = scale*v for a left eigenvector,
236 *           overwriting x on v.
237 *
238             CALL DLATRS( 'Upper', TRANS, 'Nonunit', NORMIN, N, B, LDB,
239      $                   VR, SCALE, WORK, IERR )
240             NORMIN = 'Y'
241 *
242 *           Test for sufficient growth in the norm of v.
243 *
244             VNORM = DASUM( N, VR, 1 )
245             IF( VNORM.GE.GROWTO*SCALE )
246      $         GO TO 120
247 *
248 *           Choose new orthogonal starting vector and try again.
249 *
250             TEMP = EPS3 / ( ROOTN+ONE )
251             VR( 1 ) = EPS3
252             DO 100 I = 2, N
253                VR( I ) = TEMP
254   100       CONTINUE
255             VR( N-ITS+1 ) = VR( N-ITS+1 ) - EPS3*ROOTN
256   110    CONTINUE
257 *
258 *        Failure to find eigenvector in N iterations.
259 *
260          INFO = 1
261 *
262   120    CONTINUE
263 *
264 *        Normalize eigenvector.
265 *
266          I = IDAMAX( N, VR, 1 )
267          CALL DSCAL( N, ONE / ABS( VR( I ) ), VR, 1 )
268       ELSE
269 *
270 *        Complex eigenvalue.
271 *
272          IF( NOINIT ) THEN
273 *
274 *           Set initial vector.
275 *
276             DO 130 I = 1, N
277                VR( I ) = EPS3
278                VI( I ) = ZERO
279   130       CONTINUE
280          ELSE
281 *
282 *           Scale supplied initial vector.
283 *
284             NORM = DLAPY2( DNRM2( N, VR, 1 ), DNRM2( N, VI, 1 ) )
285             REC = ( EPS3*ROOTN ) / MAX( NORM, NRMSML )
286             CALL DSCAL( N, REC, VR, 1 )
287             CALL DSCAL( N, REC, VI, 1 )
288          END IF
289 *
290          IF( RIGHTV ) THEN
291 *
292 *           LU decomposition with partial pivoting of B, replacing zero
293 *           pivots by EPS3.
294 *
295 *           The imaginary part of the (i,j)-th element of U is stored in
296 *           B(j+1,i).
297 *
298             B( 21 ) = -WI
299             DO 140 I = 2, N
300                B( I+11 ) = ZERO
301   140       CONTINUE
302 *
303             DO 170 I = 1, N - 1
304                ABSBII = DLAPY2( B( I, I ), B( I+1, I ) )
305                EI = H( I+1, I )
306                IF( ABSBII.LT.ABS( EI ) ) THEN
307 *
308 *                 Interchange rows and eliminate.
309 *
310                   XR = B( I, I ) / EI
311                   XI = B( I+1, I ) / EI
312                   B( I, I ) = EI
313                   B( I+1, I ) = ZERO
314                   DO 150 J = I + 1, N
315                      TEMP = B( I+1, J )
316                      B( I+1, J ) = B( I, J ) - XR*TEMP
317                      B( J+1, I+1 ) = B( J+1, I ) - XI*TEMP
318                      B( I, J ) = TEMP
319                      B( J+1, I ) = ZERO
320   150             CONTINUE
321                   B( I+2, I ) = -WI
322                   B( I+1, I+1 ) = B( I+1, I+1 ) - XI*WI
323                   B( I+2, I+1 ) = B( I+2, I+1 ) + XR*WI
324                ELSE
325 *
326 *                 Eliminate without interchanging rows.
327 *
328                   IF( ABSBII.EQ.ZERO ) THEN
329                      B( I, I ) = EPS3
330                      B( I+1, I ) = ZERO
331                      ABSBII = EPS3
332                   END IF
333                   EI = ( EI / ABSBII ) / ABSBII
334                   XR = B( I, I )*EI
335                   XI = -B( I+1, I )*EI
336                   DO 160 J = I + 1, N
337                      B( I+1, J ) = B( I+1, J ) - XR*B( I, J ) +
338      $                             XI*B( J+1, I )
339                      B( J+1, I+1 ) = -XR*B( J+1, I ) - XI*B( I, J )
340   160             CONTINUE
341                   B( I+2, I+1 ) = B( I+2, I+1 ) - WI
342                END IF
343 *
344 *              Compute 1-norm of offdiagonal elements of i-th row.
345 *
346                WORK( I ) = DASUM( N-I, B( I, I+1 ), LDB ) +
347      $                     DASUM( N-I, B( I+2, I ), 1 )
348   170       CONTINUE
349             IF( B( N, N ).EQ.ZERO .AND. B( N+1, N ).EQ.ZERO )
350      $         B( N, N ) = EPS3
351             WORK( N ) = ZERO
352 *
353             I1 = N
354             I2 = 1
355             I3 = -1
356          ELSE
357 *
358 *           UL decomposition with partial pivoting of conjg(B),
359 *           replacing zero pivots by EPS3.
360 *
361 *           The imaginary part of the (i,j)-th element of U is stored in
362 *           B(j+1,i).
363 *
364             B( N+1, N ) = WI
365             DO 180 J = 1, N - 1
366                B( N+1, J ) = ZERO
367   180       CONTINUE
368 *
369             DO 210 J = N, 2-1
370                EJ = H( J, J-1 )
371                ABSBJJ = DLAPY2( B( J, J ), B( J+1, J ) )
372                IF( ABSBJJ.LT.ABS( EJ ) ) THEN
373 *
374 *                 Interchange columns and eliminate
375 *
376                   XR = B( J, J ) / EJ
377                   XI = B( J+1, J ) / EJ
378                   B( J, J ) = EJ
379                   B( J+1, J ) = ZERO
380                   DO 190 I = 1, J - 1
381                      TEMP = B( I, J-1 )
382                      B( I, J-1 ) = B( I, J ) - XR*TEMP
383                      B( J, I ) = B( J+1, I ) - XI*TEMP
384                      B( I, J ) = TEMP
385                      B( J+1, I ) = ZERO
386   190             CONTINUE
387                   B( J+1, J-1 ) = WI
388                   B( J-1, J-1 ) = B( J-1, J-1 ) + XI*WI
389                   B( J, J-1 ) = B( J, J-1 ) - XR*WI
390                ELSE
391 *
392 *                 Eliminate without interchange.
393 *
394                   IF( ABSBJJ.EQ.ZERO ) THEN
395                      B( J, J ) = EPS3
396                      B( J+1, J ) = ZERO
397                      ABSBJJ = EPS3
398                   END IF
399                   EJ = ( EJ / ABSBJJ ) / ABSBJJ
400                   XR = B( J, J )*EJ
401                   XI = -B( J+1, J )*EJ
402                   DO 200 I = 1, J - 1
403                      B( I, J-1 ) = B( I, J-1 ) - XR*B( I, J ) +
404      $                             XI*B( J+1, I )
405                      B( J, I ) = -XR*B( J+1, I ) - XI*B( I, J )
406   200             CONTINUE
407                   B( J, J-1 ) = B( J, J-1 ) + WI
408                END IF
409 *
410 *              Compute 1-norm of offdiagonal elements of j-th column.
411 *
412                WORK( J ) = DASUM( J-1, B( 1, J ), 1 ) +
413      $                     DASUM( J-1, B( J+11 ), LDB )
414   210       CONTINUE
415             IF( B( 11 ).EQ.ZERO .AND. B( 21 ).EQ.ZERO )
416      $         B( 11 ) = EPS3
417             WORK( 1 ) = ZERO
418 *
419             I1 = 1
420             I2 = N
421             I3 = 1
422          END IF
423 *
424          DO 270 ITS = 1, N
425             SCALE = ONE
426             VMAX = ONE
427             VCRIT = BIGNUM
428 *
429 *           Solve U*(xr,xi) = scale*(vr,vi) for a right eigenvector,
430 *             or U**T*(xr,xi) = scale*(vr,vi) for a left eigenvector,
431 *           overwriting (xr,xi) on (vr,vi).
432 *
433             DO 250 I = I1, I2, I3
434 *
435                IF( WORK( I ).GT.VCRIT ) THEN
436                   REC = ONE / VMAX
437                   CALL DSCAL( N, REC, VR, 1 )
438                   CALL DSCAL( N, REC, VI, 1 )
439                   SCALE = SCALE*REC
440                   VMAX = ONE
441                   VCRIT = BIGNUM
442                END IF
443 *
444                XR = VR( I )
445                XI = VI( I )
446                IF( RIGHTV ) THEN
447                   DO 220 J = I + 1, N
448                      XR = XR - B( I, J )*VR( J ) + B( J+1, I )*VI( J )
449                      XI = XI - B( I, J )*VI( J ) - B( J+1, I )*VR( J )
450   220             CONTINUE
451                ELSE
452                   DO 230 J = 1, I - 1
453                      XR = XR - B( J, I )*VR( J ) + B( I+1, J )*VI( J )
454                      XI = XI - B( J, I )*VI( J ) - B( I+1, J )*VR( J )
455   230             CONTINUE
456                END IF
457 *
458                W = ABS( B( I, I ) ) + ABS( B( I+1, I ) )
459                IF( W.GT.SMLNUM ) THEN
460                   IF( W.LT.ONE ) THEN
461                      W1 = ABS( XR ) + ABS( XI )
462                      IF( W1.GT.W*BIGNUM ) THEN
463                         REC = ONE / W1
464                         CALL DSCAL( N, REC, VR, 1 )
465                         CALL DSCAL( N, REC, VI, 1 )
466                         XR = VR( I )
467                         XI = VI( I )
468                         SCALE = SCALE*REC
469                         VMAX = VMAX*REC
470                      END IF
471                   END IF
472 *
473 *                 Divide by diagonal element of B.
474 *
475                   CALL DLADIV( XR, XI, B( I, I ), B( I+1, I ), VR( I ),
476      $                         VI( I ) )
477                   VMAX = MAXABS( VR( I ) )+ABS( VI( I ) ), VMAX )
478                   VCRIT = BIGNUM / VMAX
479                ELSE
480                   DO 240 J = 1, N
481                      VR( J ) = ZERO
482                      VI( J ) = ZERO
483   240             CONTINUE
484                   VR( I ) = ONE
485                   VI( I ) = ONE
486                   SCALE = ZERO
487                   VMAX = ONE
488                   VCRIT = BIGNUM
489                END IF
490   250       CONTINUE
491 *
492 *           Test for sufficient growth in the norm of (VR,VI).
493 *
494             VNORM = DASUM( N, VR, 1 ) + DASUM( N, VI, 1 )
495             IF( VNORM.GE.GROWTO*SCALE )
496      $         GO TO 280
497 *
498 *           Choose a new orthogonal starting vector and try again.
499 *
500             Y = EPS3 / ( ROOTN+ONE )
501             VR( 1 ) = EPS3
502             VI( 1 ) = ZERO
503 *
504             DO 260 I = 2, N
505                VR( I ) = Y
506                VI( I ) = ZERO
507   260       CONTINUE
508             VR( N-ITS+1 ) = VR( N-ITS+1 ) - EPS3*ROOTN
509   270    CONTINUE
510 *
511 *        Failure to find eigenvector in N iterations
512 *
513          INFO = 1
514 *
515   280    CONTINUE
516 *
517 *        Normalize eigenvector.
518 *
519          VNORM = ZERO
520          DO 290 I = 1, N
521             VNORM = MAX( VNORM, ABS( VR( I ) )+ABS( VI( I ) ) )
522   290    CONTINUE
523          CALL DSCAL( N, ONE / VNORM, VR, 1 )
524          CALL DSCAL( N, ONE / VNORM, VI, 1 )
525 *
526       END IF
527 *
528       RETURN
529 *
530 *     End of DLAEIN
531 *
532       END