1       SUBROUTINE DLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV,
  2      $                   SNV, CSQ, SNQ )
  3 *
  4 *  -- LAPACK auxiliary routine (version 3.3.1) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *  -- April 2011                                                      --
  8 *
  9 *     .. Scalar Arguments ..
 10       LOGICAL            UPPER
 11       DOUBLE PRECISION   A1, A2, A3, B1, B2, B3, CSQ, CSU, CSV, SNQ,
 12      $                   SNU, SNV
 13 *     ..
 14 *
 15 *  Purpose
 16 *  =======
 17 *
 18 *  DLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such
 19 *  that if ( UPPER ) then
 20 *
 21 *            U**T *A*Q = U**T *( A1 A2 )*Q = ( x  0  )
 22 *                              ( 0  A3 )     ( x  x  )
 23 *  and
 24 *            V**T*B*Q = V**T *( B1 B2 )*Q = ( x  0  )
 25 *                             ( 0  B3 )     ( x  x  )
 26 *
 27 *  or if ( .NOT.UPPER ) then
 28 *
 29 *            U**T *A*Q = U**T *( A1 0  )*Q = ( x  x  )
 30 *                              ( A2 A3 )     ( 0  x  )
 31 *  and
 32 *            V**T*B*Q = V**T*( B1 0  )*Q = ( x  x  )
 33 *                            ( B2 B3 )     ( 0  x  )
 34 *
 35 *  The rows of the transformed A and B are parallel, where
 36 *
 37 *    U = (  CSU  SNU ), V = (  CSV SNV ), Q = (  CSQ   SNQ )
 38 *        ( -SNU  CSU )      ( -SNV CSV )      ( -SNQ   CSQ )
 39 *
 40 *  Z**T denotes the transpose of Z.
 41 *
 42 *
 43 *  Arguments
 44 *  =========
 45 *
 46 *  UPPER   (input) LOGICAL
 47 *          = .TRUE.: the input matrices A and B are upper triangular.
 48 *          = .FALSE.: the input matrices A and B are lower triangular.
 49 *
 50 *  A1      (input) DOUBLE PRECISION
 51 *  A2      (input) DOUBLE PRECISION
 52 *  A3      (input) DOUBLE PRECISION
 53 *          On entry, A1, A2 and A3 are elements of the input 2-by-2
 54 *          upper (lower) triangular matrix A.
 55 *
 56 *  B1      (input) DOUBLE PRECISION
 57 *  B2      (input) DOUBLE PRECISION
 58 *  B3      (input) DOUBLE PRECISION
 59 *          On entry, B1, B2 and B3 are elements of the input 2-by-2
 60 *          upper (lower) triangular matrix B.
 61 *
 62 *  CSU     (output) DOUBLE PRECISION
 63 *  SNU     (output) DOUBLE PRECISION
 64 *          The desired orthogonal matrix U.
 65 *
 66 *  CSV     (output) DOUBLE PRECISION
 67 *  SNV     (output) DOUBLE PRECISION
 68 *          The desired orthogonal matrix V.
 69 *
 70 *  CSQ     (output) DOUBLE PRECISION
 71 *  SNQ     (output) DOUBLE PRECISION
 72 *          The desired orthogonal matrix Q.
 73 *
 74 *  =====================================================================
 75 *
 76 *     .. Parameters ..
 77       DOUBLE PRECISION   ZERO
 78       PARAMETER          ( ZERO = 0.0D+0 )
 79 *     ..
 80 *     .. Local Scalars ..
 81       DOUBLE PRECISION   A, AUA11, AUA12, AUA21, AUA22, AVB11, AVB12,
 82      $                   AVB21, AVB22, B, C, CSL, CSR, D, R, S1, S2,
 83      $                   SNL, SNR, UA11, UA11R, UA12, UA21, UA22, UA22R,
 84      $                   VB11, VB11R, VB12, VB21, VB22, VB22R
 85 *     ..
 86 *     .. External Subroutines ..
 87       EXTERNAL           DLARTG, DLASV2
 88 *     ..
 89 *     .. Intrinsic Functions ..
 90       INTRINSIC          ABS
 91 *     ..
 92 *     .. Executable Statements ..
 93 *
 94       IF( UPPER ) THEN
 95 *
 96 *        Input matrices A and B are upper triangular matrices
 97 *
 98 *        Form matrix C = A*adj(B) = ( a b )
 99 *                                   ( 0 d )
100 *
101          A = A1*B3
102          D = A3*B1
103          B = A2*B1 - A1*B2
104 *
105 *        The SVD of real 2-by-2 triangular C
106 *
107 *         ( CSL -SNL )*( A B )*(  CSR  SNR ) = ( R 0 )
108 *         ( SNL  CSL ) ( 0 D ) ( -SNR  CSR )   ( 0 T )
109 *
110          CALL DLASV2( A, B, D, S1, S2, SNR, CSR, SNL, CSL )
111 *
112          IFABS( CSL ).GE.ABS( SNL ) .OR. ABS( CSR ).GE.ABS( SNR ) )
113      $        THEN
114 *
115 *           Compute the (1,1) and (1,2) elements of U**T *A and V**T *B,
116 *           and (1,2) element of |U|**T *|A| and |V|**T *|B|.
117 *
118             UA11R = CSL*A1
119             UA12 = CSL*A2 + SNL*A3
120 *
121             VB11R = CSR*B1
122             VB12 = CSR*B2 + SNR*B3
123 *
124             AUA12 = ABS( CSL )*ABS( A2 ) + ABS( SNL )*ABS( A3 )
125             AVB12 = ABS( CSR )*ABS( B2 ) + ABS( SNR )*ABS( B3 )
126 *
127 *           zero (1,2) elements of U**T *A and V**T *B
128 *
129             IF( ( ABS( UA11R )+ABS( UA12 ) ).NE.ZERO ) THEN
130                IF( AUA12 / ( ABS( UA11R )+ABS( UA12 ) ).LE.AVB12 /
131      $             ( ABS( VB11R )+ABS( VB12 ) ) ) THEN
132                   CALL DLARTG( -UA11R, UA12, CSQ, SNQ, R )
133                ELSE
134                   CALL DLARTG( -VB11R, VB12, CSQ, SNQ, R )
135                END IF
136             ELSE
137                CALL DLARTG( -VB11R, VB12, CSQ, SNQ, R )
138             END IF
139 *
140             CSU = CSL
141             SNU = -SNL
142             CSV = CSR
143             SNV = -SNR
144 *
145          ELSE
146 *
147 *           Compute the (2,1) and (2,2) elements of U**T *A and V**T *B,
148 *           and (2,2) element of |U|**T *|A| and |V|**T *|B|.
149 *
150             UA21 = -SNL*A1
151             UA22 = -SNL*A2 + CSL*A3
152 *
153             VB21 = -SNR*B1
154             VB22 = -SNR*B2 + CSR*B3
155 *
156             AUA22 = ABS( SNL )*ABS( A2 ) + ABS( CSL )*ABS( A3 )
157             AVB22 = ABS( SNR )*ABS( B2 ) + ABS( CSR )*ABS( B3 )
158 *
159 *           zero (2,2) elements of U**T*A and V**T*B, and then swap.
160 *
161             IF( ( ABS( UA21 )+ABS( UA22 ) ).NE.ZERO ) THEN
162                IF( AUA22 / ( ABS( UA21 )+ABS( UA22 ) ).LE.AVB22 /
163      $             ( ABS( VB21 )+ABS( VB22 ) ) ) THEN
164                   CALL DLARTG( -UA21, UA22, CSQ, SNQ, R )
165                ELSE
166                   CALL DLARTG( -VB21, VB22, CSQ, SNQ, R )
167                END IF
168             ELSE
169                CALL DLARTG( -VB21, VB22, CSQ, SNQ, R )
170             END IF
171 *
172             CSU = SNL
173             SNU = CSL
174             CSV = SNR
175             SNV = CSR
176 *
177          END IF
178 *
179       ELSE
180 *
181 *        Input matrices A and B are lower triangular matrices
182 *
183 *        Form matrix C = A*adj(B) = ( a 0 )
184 *                                   ( c d )
185 *
186          A = A1*B3
187          D = A3*B1
188          C = A2*B3 - A3*B2
189 *
190 *        The SVD of real 2-by-2 triangular C
191 *
192 *         ( CSL -SNL )*( A 0 )*(  CSR  SNR ) = ( R 0 )
193 *         ( SNL  CSL ) ( C D ) ( -SNR  CSR )   ( 0 T )
194 *
195          CALL DLASV2( A, C, D, S1, S2, SNR, CSR, SNL, CSL )
196 *
197          IFABS( CSR ).GE.ABS( SNR ) .OR. ABS( CSL ).GE.ABS( SNL ) )
198      $        THEN
199 *
200 *           Compute the (2,1) and (2,2) elements of U**T *A and V**T *B,
201 *           and (2,1) element of |U|**T *|A| and |V|**T *|B|.
202 *
203             UA21 = -SNR*A1 + CSR*A2
204             UA22R = CSR*A3
205 *
206             VB21 = -SNL*B1 + CSL*B2
207             VB22R = CSL*B3
208 *
209             AUA21 = ABS( SNR )*ABS( A1 ) + ABS( CSR )*ABS( A2 )
210             AVB21 = ABS( SNL )*ABS( B1 ) + ABS( CSL )*ABS( B2 )
211 *
212 *           zero (2,1) elements of U**T *A and V**T *B.
213 *
214             IF( ( ABS( UA21 )+ABS( UA22R ) ).NE.ZERO ) THEN
215                IF( AUA21 / ( ABS( UA21 )+ABS( UA22R ) ).LE.AVB21 /
216      $             ( ABS( VB21 )+ABS( VB22R ) ) ) THEN
217                   CALL DLARTG( UA22R, UA21, CSQ, SNQ, R )
218                ELSE
219                   CALL DLARTG( VB22R, VB21, CSQ, SNQ, R )
220                END IF
221             ELSE
222                CALL DLARTG( VB22R, VB21, CSQ, SNQ, R )
223             END IF
224 *
225             CSU = CSR
226             SNU = -SNR
227             CSV = CSL
228             SNV = -SNL
229 *
230          ELSE
231 *
232 *           Compute the (1,1) and (1,2) elements of U**T *A and V**T *B,
233 *           and (1,1) element of |U|**T *|A| and |V|**T *|B|.
234 *
235             UA11 = CSR*A1 + SNR*A2
236             UA12 = SNR*A3
237 *
238             VB11 = CSL*B1 + SNL*B2
239             VB12 = SNL*B3
240 *
241             AUA11 = ABS( CSR )*ABS( A1 ) + ABS( SNR )*ABS( A2 )
242             AVB11 = ABS( CSL )*ABS( B1 ) + ABS( SNL )*ABS( B2 )
243 *
244 *           zero (1,1) elements of U**T*A and V**T*B, and then swap.
245 *
246             IF( ( ABS( UA11 )+ABS( UA12 ) ).NE.ZERO ) THEN
247                IF( AUA11 / ( ABS( UA11 )+ABS( UA12 ) ).LE.AVB11 /
248      $             ( ABS( VB11 )+ABS( VB12 ) ) ) THEN
249                   CALL DLARTG( UA12, UA11, CSQ, SNQ, R )
250                ELSE
251                   CALL DLARTG( VB12, VB11, CSQ, SNQ, R )
252                END IF
253             ELSE
254                CALL DLARTG( VB12, VB11, CSQ, SNQ, R )
255             END IF
256 *
257             CSU = SNR
258             SNU = CSR
259             CSV = SNL
260             SNV = CSL
261 *
262          END IF
263 *
264       END IF
265 *
266       RETURN
267 *
268 *     End of DLAGS2
269 *
270       END