1       DOUBLE PRECISION FUNCTION DLANGE( NORM, M, N, A, LDA, WORK )
  2 *
  3 *  -- LAPACK auxiliary routine (version 3.2) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          NORM
 10       INTEGER            LDA, M, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       DOUBLE PRECISION   A( LDA, * ), WORK( * )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  DLANGE  returns the value of the one norm,  or the Frobenius norm, or
 20 *  the  infinity norm,  or the  element of  largest absolute value  of a
 21 *  real matrix A.
 22 *
 23 *  Description
 24 *  ===========
 25 *
 26 *  DLANGE returns the value
 27 *
 28 *     DLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 29 *              (
 30 *              ( norm1(A),         NORM = '1', 'O' or 'o'
 31 *              (
 32 *              ( normI(A),         NORM = 'I' or 'i'
 33 *              (
 34 *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 35 *
 36 *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
 37 *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 38 *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
 39 *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 40 *
 41 *  Arguments
 42 *  =========
 43 *
 44 *  NORM    (input) CHARACTER*1
 45 *          Specifies the value to be returned in DLANGE as described
 46 *          above.
 47 *
 48 *  M       (input) INTEGER
 49 *          The number of rows of the matrix A.  M >= 0.  When M = 0,
 50 *          DLANGE is set to zero.
 51 *
 52 *  N       (input) INTEGER
 53 *          The number of columns of the matrix A.  N >= 0.  When N = 0,
 54 *          DLANGE is set to zero.
 55 *
 56 *  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
 57 *          The m by n matrix A.
 58 *
 59 *  LDA     (input) INTEGER
 60 *          The leading dimension of the array A.  LDA >= max(M,1).
 61 *
 62 *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
 63 *          where LWORK >= M when NORM = 'I'; otherwise, WORK is not
 64 *          referenced.
 65 *
 66 * =====================================================================
 67 *
 68 *     .. Parameters ..
 69       DOUBLE PRECISION   ONE, ZERO
 70       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 71 *     ..
 72 *     .. Local Scalars ..
 73       INTEGER            I, J
 74       DOUBLE PRECISION   SCALESUMVALUE
 75 *     ..
 76 *     .. External Subroutines ..
 77       EXTERNAL           DLASSQ
 78 *     ..
 79 *     .. External Functions ..
 80       LOGICAL            LSAME
 81       EXTERNAL           LSAME
 82 *     ..
 83 *     .. Intrinsic Functions ..
 84       INTRINSIC          ABSMAXMINSQRT
 85 *     ..
 86 *     .. Executable Statements ..
 87 *
 88       IFMIN( M, N ).EQ.0 ) THEN
 89          VALUE = ZERO
 90       ELSE IF( LSAME( NORM, 'M' ) ) THEN
 91 *
 92 *        Find max(abs(A(i,j))).
 93 *
 94          VALUE = ZERO
 95          DO 20 J = 1, N
 96             DO 10 I = 1, M
 97                VALUE = MAXVALUEABS( A( I, J ) ) )
 98    10       CONTINUE
 99    20    CONTINUE
100       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
101 *
102 *        Find norm1(A).
103 *
104          VALUE = ZERO
105          DO 40 J = 1, N
106             SUM = ZERO
107             DO 30 I = 1, M
108                SUM = SUM + ABS( A( I, J ) )
109    30       CONTINUE
110             VALUE = MAXVALUESUM )
111    40    CONTINUE
112       ELSE IF( LSAME( NORM, 'I' ) ) THEN
113 *
114 *        Find normI(A).
115 *
116          DO 50 I = 1, M
117             WORK( I ) = ZERO
118    50    CONTINUE
119          DO 70 J = 1, N
120             DO 60 I = 1, M
121                WORK( I ) = WORK( I ) + ABS( A( I, J ) )
122    60       CONTINUE
123    70    CONTINUE
124          VALUE = ZERO
125          DO 80 I = 1, M
126             VALUE = MAXVALUE, WORK( I ) )
127    80    CONTINUE
128       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
129 *
130 *        Find normF(A).
131 *
132          SCALE = ZERO
133          SUM = ONE
134          DO 90 J = 1, N
135             CALL DLASSQ( M, A( 1, J ), 1SCALESUM )
136    90    CONTINUE
137          VALUE = SCALE*SQRTSUM )
138       END IF
139 *
140       DLANGE = VALUE
141       RETURN
142 *
143 *     End of DLANGE
144 *
145       END