1       DOUBLE PRECISION FUNCTION DLANHS( NORM, N, A, LDA, WORK )
  2 *
  3 *  -- LAPACK auxiliary routine (version 3.2) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          NORM
 10       INTEGER            LDA, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       DOUBLE PRECISION   A( LDA, * ), WORK( * )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  DLANHS  returns the value of the one norm,  or the Frobenius norm, or
 20 *  the  infinity norm,  or the  element of  largest absolute value  of a
 21 *  Hessenberg matrix A.
 22 *
 23 *  Description
 24 *  ===========
 25 *
 26 *  DLANHS returns the value
 27 *
 28 *     DLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 29 *              (
 30 *              ( norm1(A),         NORM = '1', 'O' or 'o'
 31 *              (
 32 *              ( normI(A),         NORM = 'I' or 'i'
 33 *              (
 34 *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 35 *
 36 *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
 37 *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 38 *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
 39 *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 40 *
 41 *  Arguments
 42 *  =========
 43 *
 44 *  NORM    (input) CHARACTER*1
 45 *          Specifies the value to be returned in DLANHS as described
 46 *          above.
 47 *
 48 *  N       (input) INTEGER
 49 *          The order of the matrix A.  N >= 0.  When N = 0, DLANHS is
 50 *          set to zero.
 51 *
 52 *  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
 53 *          The n by n upper Hessenberg matrix A; the part of A below the
 54 *          first sub-diagonal is not referenced.
 55 *
 56 *  LDA     (input) INTEGER
 57 *          The leading dimension of the array A.  LDA >= max(N,1).
 58 *
 59 *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
 60 *          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
 61 *          referenced.
 62 *
 63 * =====================================================================
 64 *
 65 *     .. Parameters ..
 66       DOUBLE PRECISION   ONE, ZERO
 67       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 68 *     ..
 69 *     .. Local Scalars ..
 70       INTEGER            I, J
 71       DOUBLE PRECISION   SCALESUMVALUE
 72 *     ..
 73 *     .. External Subroutines ..
 74       EXTERNAL           DLASSQ
 75 *     ..
 76 *     .. External Functions ..
 77       LOGICAL            LSAME
 78       EXTERNAL           LSAME
 79 *     ..
 80 *     .. Intrinsic Functions ..
 81       INTRINSIC          ABSMAXMINSQRT
 82 *     ..
 83 *     .. Executable Statements ..
 84 *
 85       IF( N.EQ.0 ) THEN
 86          VALUE = ZERO
 87       ELSE IF( LSAME( NORM, 'M' ) ) THEN
 88 *
 89 *        Find max(abs(A(i,j))).
 90 *
 91          VALUE = ZERO
 92          DO 20 J = 1, N
 93             DO 10 I = 1MIN( N, J+1 )
 94                VALUE = MAXVALUEABS( A( I, J ) ) )
 95    10       CONTINUE
 96    20    CONTINUE
 97       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
 98 *
 99 *        Find norm1(A).
100 *
101          VALUE = ZERO
102          DO 40 J = 1, N
103             SUM = ZERO
104             DO 30 I = 1MIN( N, J+1 )
105                SUM = SUM + ABS( A( I, J ) )
106    30       CONTINUE
107             VALUE = MAXVALUESUM )
108    40    CONTINUE
109       ELSE IF( LSAME( NORM, 'I' ) ) THEN
110 *
111 *        Find normI(A).
112 *
113          DO 50 I = 1, N
114             WORK( I ) = ZERO
115    50    CONTINUE
116          DO 70 J = 1, N
117             DO 60 I = 1MIN( N, J+1 )
118                WORK( I ) = WORK( I ) + ABS( A( I, J ) )
119    60       CONTINUE
120    70    CONTINUE
121          VALUE = ZERO
122          DO 80 I = 1, N
123             VALUE = MAXVALUE, WORK( I ) )
124    80    CONTINUE
125       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
126 *
127 *        Find normF(A).
128 *
129          SCALE = ZERO
130          SUM = ONE
131          DO 90 J = 1, N
132             CALL DLASSQ( MIN( N, J+1 ), A( 1, J ), 1SCALESUM )
133    90    CONTINUE
134          VALUE = SCALE*SQRTSUM )
135       END IF
136 *
137       DLANHS = VALUE
138       RETURN
139 *
140 *     End of DLANHS
141 *
142       END