1       DOUBLE PRECISION FUNCTION DLANSB( NORM, UPLO, N, K, AB, LDAB,
  2      $                 WORK )
  3 *
  4 *  -- LAPACK auxiliary routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          NORM, UPLO
 11       INTEGER            K, LDAB, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   AB( LDAB, * ), WORK( * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  DLANSB  returns the value of the one norm,  or the Frobenius norm, or
 21 *  the  infinity norm,  or the element of  largest absolute value  of an
 22 *  n by n symmetric band matrix A,  with k super-diagonals.
 23 *
 24 *  Description
 25 *  ===========
 26 *
 27 *  DLANSB returns the value
 28 *
 29 *     DLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 30 *              (
 31 *              ( norm1(A),         NORM = '1', 'O' or 'o'
 32 *              (
 33 *              ( normI(A),         NORM = 'I' or 'i'
 34 *              (
 35 *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 36 *
 37 *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
 38 *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 39 *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
 40 *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 41 *
 42 *  Arguments
 43 *  =========
 44 *
 45 *  NORM    (input) CHARACTER*1
 46 *          Specifies the value to be returned in DLANSB as described
 47 *          above.
 48 *
 49 *  UPLO    (input) CHARACTER*1
 50 *          Specifies whether the upper or lower triangular part of the
 51 *          band matrix A is supplied.
 52 *          = 'U':  Upper triangular part is supplied
 53 *          = 'L':  Lower triangular part is supplied
 54 *
 55 *  N       (input) INTEGER
 56 *          The order of the matrix A.  N >= 0.  When N = 0, DLANSB is
 57 *          set to zero.
 58 *
 59 *  K       (input) INTEGER
 60 *          The number of super-diagonals or sub-diagonals of the
 61 *          band matrix A.  K >= 0.
 62 *
 63 *  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N)
 64 *          The upper or lower triangle of the symmetric band matrix A,
 65 *          stored in the first K+1 rows of AB.  The j-th column of A is
 66 *          stored in the j-th column of the array AB as follows:
 67 *          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
 68 *          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).
 69 *
 70 *  LDAB    (input) INTEGER
 71 *          The leading dimension of the array AB.  LDAB >= K+1.
 72 *
 73 *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
 74 *          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
 75 *          WORK is not referenced.
 76 *
 77 * =====================================================================
 78 *
 79 *     .. Parameters ..
 80       DOUBLE PRECISION   ONE, ZERO
 81       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 82 *     ..
 83 *     .. Local Scalars ..
 84       INTEGER            I, J, L
 85       DOUBLE PRECISION   ABSA, SCALESUMVALUE
 86 *     ..
 87 *     .. External Subroutines ..
 88       EXTERNAL           DLASSQ
 89 *     ..
 90 *     .. External Functions ..
 91       LOGICAL            LSAME
 92       EXTERNAL           LSAME
 93 *     ..
 94 *     .. Intrinsic Functions ..
 95       INTRINSIC          ABSMAXMINSQRT
 96 *     ..
 97 *     .. Executable Statements ..
 98 *
 99       IF( N.EQ.0 ) THEN
100          VALUE = ZERO
101       ELSE IF( LSAME( NORM, 'M' ) ) THEN
102 *
103 *        Find max(abs(A(i,j))).
104 *
105          VALUE = ZERO
106          IF( LSAME( UPLO, 'U' ) ) THEN
107             DO 20 J = 1, N
108                DO 10 I = MAX( K+2-J, 1 ), K + 1
109                   VALUE = MAXVALUEABS( AB( I, J ) ) )
110    10          CONTINUE
111    20       CONTINUE
112          ELSE
113             DO 40 J = 1, N
114                DO 30 I = 1MIN( N+1-J, K+1 )
115                   VALUE = MAXVALUEABS( AB( I, J ) ) )
116    30          CONTINUE
117    40       CONTINUE
118          END IF
119       ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
120      $         ( NORM.EQ.'1' ) ) THEN
121 *
122 *        Find normI(A) ( = norm1(A), since A is symmetric).
123 *
124          VALUE = ZERO
125          IF( LSAME( UPLO, 'U' ) ) THEN
126             DO 60 J = 1, N
127                SUM = ZERO
128                L = K + 1 - J
129                DO 50 I = MAX1, J-K ), J - 1
130                   ABSA = ABS( AB( L+I, J ) )
131                   SUM = SUM + ABSA
132                   WORK( I ) = WORK( I ) + ABSA
133    50          CONTINUE
134                WORK( J ) = SUM + ABS( AB( K+1, J ) )
135    60       CONTINUE
136             DO 70 I = 1, N
137                VALUE = MAXVALUE, WORK( I ) )
138    70       CONTINUE
139          ELSE
140             DO 80 I = 1, N
141                WORK( I ) = ZERO
142    80       CONTINUE
143             DO 100 J = 1, N
144                SUM = WORK( J ) + ABS( AB( 1, J ) )
145                L = 1 - J
146                DO 90 I = J + 1MIN( N, J+K )
147                   ABSA = ABS( AB( L+I, J ) )
148                   SUM = SUM + ABSA
149                   WORK( I ) = WORK( I ) + ABSA
150    90          CONTINUE
151                VALUE = MAXVALUESUM )
152   100       CONTINUE
153          END IF
154       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
155 *
156 *        Find normF(A).
157 *
158          SCALE = ZERO
159          SUM = ONE
160          IF( K.GT.0 ) THEN
161             IF( LSAME( UPLO, 'U' ) ) THEN
162                DO 110 J = 2, N
163                   CALL DLASSQ( MIN( J-1, K ), AB( MAX( K+2-J, 1 ), J ),
164      $                         1SCALESUM )
165   110          CONTINUE
166                L = K + 1
167             ELSE
168                DO 120 J = 1, N - 1
169                   CALL DLASSQ( MIN( N-J, K ), AB( 2, J ), 1SCALE,
170      $                         SUM )
171   120          CONTINUE
172                L = 1
173             END IF
174             SUM = 2*SUM
175          ELSE
176             L = 1
177          END IF
178          CALL DLASSQ( N, AB( L, 1 ), LDAB, SCALESUM )
179          VALUE = SCALE*SQRTSUM )
180       END IF
181 *
182       DLANSB = VALUE
183       RETURN
184 *
185 *     End of DLANSB
186 *
187       END