1       DOUBLE PRECISION FUNCTION DLANSP( NORM, UPLO, N, AP, WORK )
  2 *
  3 *  -- LAPACK auxiliary routine (version 3.2) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          NORM, UPLO
 10       INTEGER            N
 11 *     ..
 12 *     .. Array Arguments ..
 13       DOUBLE PRECISION   AP( * ), WORK( * )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  DLANSP  returns the value of the one norm,  or the Frobenius norm, or
 20 *  the  infinity norm,  or the  element of  largest absolute value  of a
 21 *  real symmetric matrix A,  supplied in packed form.
 22 *
 23 *  Description
 24 *  ===========
 25 *
 26 *  DLANSP returns the value
 27 *
 28 *     DLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 29 *              (
 30 *              ( norm1(A),         NORM = '1', 'O' or 'o'
 31 *              (
 32 *              ( normI(A),         NORM = 'I' or 'i'
 33 *              (
 34 *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 35 *
 36 *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
 37 *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 38 *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
 39 *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 40 *
 41 *  Arguments
 42 *  =========
 43 *
 44 *  NORM    (input) CHARACTER*1
 45 *          Specifies the value to be returned in DLANSP as described
 46 *          above.
 47 *
 48 *  UPLO    (input) CHARACTER*1
 49 *          Specifies whether the upper or lower triangular part of the
 50 *          symmetric matrix A is supplied.
 51 *          = 'U':  Upper triangular part of A is supplied
 52 *          = 'L':  Lower triangular part of A is supplied
 53 *
 54 *  N       (input) INTEGER
 55 *          The order of the matrix A.  N >= 0.  When N = 0, DLANSP is
 56 *          set to zero.
 57 *
 58 *  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
 59 *          The upper or lower triangle of the symmetric matrix A, packed
 60 *          columnwise in a linear array.  The j-th column of A is stored
 61 *          in the array AP as follows:
 62 *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 63 *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
 64 *
 65 *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
 66 *          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
 67 *          WORK is not referenced.
 68 *
 69 * =====================================================================
 70 *
 71 *     .. Parameters ..
 72       DOUBLE PRECISION   ONE, ZERO
 73       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 74 *     ..
 75 *     .. Local Scalars ..
 76       INTEGER            I, J, K
 77       DOUBLE PRECISION   ABSA, SCALESUMVALUE
 78 *     ..
 79 *     .. External Subroutines ..
 80       EXTERNAL           DLASSQ
 81 *     ..
 82 *     .. External Functions ..
 83       LOGICAL            LSAME
 84       EXTERNAL           LSAME
 85 *     ..
 86 *     .. Intrinsic Functions ..
 87       INTRINSIC          ABSMAXSQRT
 88 *     ..
 89 *     .. Executable Statements ..
 90 *
 91       IF( N.EQ.0 ) THEN
 92          VALUE = ZERO
 93       ELSE IF( LSAME( NORM, 'M' ) ) THEN
 94 *
 95 *        Find max(abs(A(i,j))).
 96 *
 97          VALUE = ZERO
 98          IF( LSAME( UPLO, 'U' ) ) THEN
 99             K = 1
100             DO 20 J = 1, N
101                DO 10 I = K, K + J - 1
102                   VALUE = MAXVALUEABS( AP( I ) ) )
103    10          CONTINUE
104                K = K + J
105    20       CONTINUE
106          ELSE
107             K = 1
108             DO 40 J = 1, N
109                DO 30 I = K, K + N - J
110                   VALUE = MAXVALUEABS( AP( I ) ) )
111    30          CONTINUE
112                K = K + N - J + 1
113    40       CONTINUE
114          END IF
115       ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
116      $         ( NORM.EQ.'1' ) ) THEN
117 *
118 *        Find normI(A) ( = norm1(A), since A is symmetric).
119 *
120          VALUE = ZERO
121          K = 1
122          IF( LSAME( UPLO, 'U' ) ) THEN
123             DO 60 J = 1, N
124                SUM = ZERO
125                DO 50 I = 1, J - 1
126                   ABSA = ABS( AP( K ) )
127                   SUM = SUM + ABSA
128                   WORK( I ) = WORK( I ) + ABSA
129                   K = K + 1
130    50          CONTINUE
131                WORK( J ) = SUM + ABS( AP( K ) )
132                K = K + 1
133    60       CONTINUE
134             DO 70 I = 1, N
135                VALUE = MAXVALUE, WORK( I ) )
136    70       CONTINUE
137          ELSE
138             DO 80 I = 1, N
139                WORK( I ) = ZERO
140    80       CONTINUE
141             DO 100 J = 1, N
142                SUM = WORK( J ) + ABS( AP( K ) )
143                K = K + 1
144                DO 90 I = J + 1, N
145                   ABSA = ABS( AP( K ) )
146                   SUM = SUM + ABSA
147                   WORK( I ) = WORK( I ) + ABSA
148                   K = K + 1
149    90          CONTINUE
150                VALUE = MAXVALUESUM )
151   100       CONTINUE
152          END IF
153       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
154 *
155 *        Find normF(A).
156 *
157          SCALE = ZERO
158          SUM = ONE
159          K = 2
160          IF( LSAME( UPLO, 'U' ) ) THEN
161             DO 110 J = 2, N
162                CALL DLASSQ( J-1, AP( K ), 1SCALESUM )
163                K = K + J
164   110       CONTINUE
165          ELSE
166             DO 120 J = 1, N - 1
167                CALL DLASSQ( N-J, AP( K ), 1SCALESUM )
168                K = K + N - J + 1
169   120       CONTINUE
170          END IF
171          SUM = 2*SUM
172          K = 1
173          DO 130 I = 1, N
174             IF( AP( K ).NE.ZERO ) THEN
175                ABSA = ABS( AP( K ) )
176                IFSCALE.LT.ABSA ) THEN
177                   SUM = ONE + SUM*SCALE / ABSA )**2
178                   SCALE = ABSA
179                ELSE
180                   SUM = SUM + ( ABSA / SCALE )**2
181                END IF
182             END IF
183             IF( LSAME( UPLO, 'U' ) ) THEN
184                K = K + I + 1
185             ELSE
186                K = K + N - I + 1
187             END IF
188   130    CONTINUE
189          VALUE = SCALE*SQRTSUM )
190       END IF
191 *
192       DLANSP = VALUE
193       RETURN
194 *
195 *     End of DLANSP
196 *
197       END