1       DOUBLE PRECISION FUNCTION DLANTB( NORM, UPLO, DIAG, N, K, AB,
  2      $                 LDAB, WORK )
  3 *
  4 *  -- LAPACK auxiliary routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          DIAG, NORM, UPLO
 11       INTEGER            K, LDAB, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   AB( LDAB, * ), WORK( * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  DLANTB  returns the value of the one norm,  or the Frobenius norm, or
 21 *  the  infinity norm,  or the element of  largest absolute value  of an
 22 *  n by n triangular band matrix A,  with ( k + 1 ) diagonals.
 23 *
 24 *  Description
 25 *  ===========
 26 *
 27 *  DLANTB returns the value
 28 *
 29 *     DLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 30 *              (
 31 *              ( norm1(A),         NORM = '1', 'O' or 'o'
 32 *              (
 33 *              ( normI(A),         NORM = 'I' or 'i'
 34 *              (
 35 *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 36 *
 37 *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
 38 *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 39 *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
 40 *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 41 *
 42 *  Arguments
 43 *  =========
 44 *
 45 *  NORM    (input) CHARACTER*1
 46 *          Specifies the value to be returned in DLANTB as described
 47 *          above.
 48 *
 49 *  UPLO    (input) CHARACTER*1
 50 *          Specifies whether the matrix A is upper or lower triangular.
 51 *          = 'U':  Upper triangular
 52 *          = 'L':  Lower triangular
 53 *
 54 *  DIAG    (input) CHARACTER*1
 55 *          Specifies whether or not the matrix A is unit triangular.
 56 *          = 'N':  Non-unit triangular
 57 *          = 'U':  Unit triangular
 58 *
 59 *  N       (input) INTEGER
 60 *          The order of the matrix A.  N >= 0.  When N = 0, DLANTB is
 61 *          set to zero.
 62 *
 63 *  K       (input) INTEGER
 64 *          The number of super-diagonals of the matrix A if UPLO = 'U',
 65 *          or the number of sub-diagonals of the matrix A if UPLO = 'L'.
 66 *          K >= 0.
 67 *
 68 *  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N)
 69 *          The upper or lower triangular band matrix A, stored in the
 70 *          first k+1 rows of AB.  The j-th column of A is stored
 71 *          in the j-th column of the array AB as follows:
 72 *          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
 73 *          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).
 74 *          Note that when DIAG = 'U', the elements of the array AB
 75 *          corresponding to the diagonal elements of the matrix A are
 76 *          not referenced, but are assumed to be one.
 77 *
 78 *  LDAB    (input) INTEGER
 79 *          The leading dimension of the array AB.  LDAB >= K+1.
 80 *
 81 *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
 82 *          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
 83 *          referenced.
 84 *
 85 * =====================================================================
 86 *
 87 *     .. Parameters ..
 88       DOUBLE PRECISION   ONE, ZERO
 89       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 90 *     ..
 91 *     .. Local Scalars ..
 92       LOGICAL            UDIAG
 93       INTEGER            I, J, L
 94       DOUBLE PRECISION   SCALESUMVALUE
 95 *     ..
 96 *     .. External Subroutines ..
 97       EXTERNAL           DLASSQ
 98 *     ..
 99 *     .. External Functions ..
100       LOGICAL            LSAME
101       EXTERNAL           LSAME
102 *     ..
103 *     .. Intrinsic Functions ..
104       INTRINSIC          ABSMAXMINSQRT
105 *     ..
106 *     .. Executable Statements ..
107 *
108       IF( N.EQ.0 ) THEN
109          VALUE = ZERO
110       ELSE IF( LSAME( NORM, 'M' ) ) THEN
111 *
112 *        Find max(abs(A(i,j))).
113 *
114          IF( LSAME( DIAG, 'U' ) ) THEN
115             VALUE = ONE
116             IF( LSAME( UPLO, 'U' ) ) THEN
117                DO 20 J = 1, N
118                   DO 10 I = MAX( K+2-J, 1 ), K
119                      VALUE = MAXVALUEABS( AB( I, J ) ) )
120    10             CONTINUE
121    20          CONTINUE
122             ELSE
123                DO 40 J = 1, N
124                   DO 30 I = 2MIN( N+1-J, K+1 )
125                      VALUE = MAXVALUEABS( AB( I, J ) ) )
126    30             CONTINUE
127    40          CONTINUE
128             END IF
129          ELSE
130             VALUE = ZERO
131             IF( LSAME( UPLO, 'U' ) ) THEN
132                DO 60 J = 1, N
133                   DO 50 I = MAX( K+2-J, 1 ), K + 1
134                      VALUE = MAXVALUEABS( AB( I, J ) ) )
135    50             CONTINUE
136    60          CONTINUE
137             ELSE
138                DO 80 J = 1, N
139                   DO 70 I = 1MIN( N+1-J, K+1 )
140                      VALUE = MAXVALUEABS( AB( I, J ) ) )
141    70             CONTINUE
142    80          CONTINUE
143             END IF
144          END IF
145       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
146 *
147 *        Find norm1(A).
148 *
149          VALUE = ZERO
150          UDIAG = LSAME( DIAG, 'U' )
151          IF( LSAME( UPLO, 'U' ) ) THEN
152             DO 110 J = 1, N
153                IF( UDIAG ) THEN
154                   SUM = ONE
155                   DO 90 I = MAX( K+2-J, 1 ), K
156                      SUM = SUM + ABS( AB( I, J ) )
157    90             CONTINUE
158                ELSE
159                   SUM = ZERO
160                   DO 100 I = MAX( K+2-J, 1 ), K + 1
161                      SUM = SUM + ABS( AB( I, J ) )
162   100             CONTINUE
163                END IF
164                VALUE = MAXVALUESUM )
165   110       CONTINUE
166          ELSE
167             DO 140 J = 1, N
168                IF( UDIAG ) THEN
169                   SUM = ONE
170                   DO 120 I = 2MIN( N+1-J, K+1 )
171                      SUM = SUM + ABS( AB( I, J ) )
172   120             CONTINUE
173                ELSE
174                   SUM = ZERO
175                   DO 130 I = 1MIN( N+1-J, K+1 )
176                      SUM = SUM + ABS( AB( I, J ) )
177   130             CONTINUE
178                END IF
179                VALUE = MAXVALUESUM )
180   140       CONTINUE
181          END IF
182       ELSE IF( LSAME( NORM, 'I' ) ) THEN
183 *
184 *        Find normI(A).
185 *
186          VALUE = ZERO
187          IF( LSAME( UPLO, 'U' ) ) THEN
188             IF( LSAME( DIAG, 'U' ) ) THEN
189                DO 150 I = 1, N
190                   WORK( I ) = ONE
191   150          CONTINUE
192                DO 170 J = 1, N
193                   L = K + 1 - J
194                   DO 160 I = MAX1, J-K ), J - 1
195                      WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
196   160             CONTINUE
197   170          CONTINUE
198             ELSE
199                DO 180 I = 1, N
200                   WORK( I ) = ZERO
201   180          CONTINUE
202                DO 200 J = 1, N
203                   L = K + 1 - J
204                   DO 190 I = MAX1, J-K ), J
205                      WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
206   190             CONTINUE
207   200          CONTINUE
208             END IF
209          ELSE
210             IF( LSAME( DIAG, 'U' ) ) THEN
211                DO 210 I = 1, N
212                   WORK( I ) = ONE
213   210          CONTINUE
214                DO 230 J = 1, N
215                   L = 1 - J
216                   DO 220 I = J + 1MIN( N, J+K )
217                      WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
218   220             CONTINUE
219   230          CONTINUE
220             ELSE
221                DO 240 I = 1, N
222                   WORK( I ) = ZERO
223   240          CONTINUE
224                DO 260 J = 1, N
225                   L = 1 - J
226                   DO 250 I = J, MIN( N, J+K )
227                      WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
228   250             CONTINUE
229   260          CONTINUE
230             END IF
231          END IF
232          DO 270 I = 1, N
233             VALUE = MAXVALUE, WORK( I ) )
234   270    CONTINUE
235       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
236 *
237 *        Find normF(A).
238 *
239          IF( LSAME( UPLO, 'U' ) ) THEN
240             IF( LSAME( DIAG, 'U' ) ) THEN
241                SCALE = ONE
242                SUM = N
243                IF( K.GT.0 ) THEN
244                   DO 280 J = 2, N
245                      CALL DLASSQ( MIN( J-1, K ),
246      $                            AB( MAX( K+2-J, 1 ), J ), 1SCALE,
247      $                            SUM )
248   280             CONTINUE
249                END IF
250             ELSE
251                SCALE = ZERO
252                SUM = ONE
253                DO 290 J = 1, N
254                   CALL DLASSQ( MIN( J, K+1 ), AB( MAX( K+2-J, 1 ), J ),
255      $                         1SCALESUM )
256   290          CONTINUE
257             END IF
258          ELSE
259             IF( LSAME( DIAG, 'U' ) ) THEN
260                SCALE = ONE
261                SUM = N
262                IF( K.GT.0 ) THEN
263                   DO 300 J = 1, N - 1
264                      CALL DLASSQ( MIN( N-J, K ), AB( 2, J ), 1SCALE,
265      $                            SUM )
266   300             CONTINUE
267                END IF
268             ELSE
269                SCALE = ZERO
270                SUM = ONE
271                DO 310 J = 1, N
272                   CALL DLASSQ( MIN( N-J+1, K+1 ), AB( 1, J ), 1SCALE,
273      $                         SUM )
274   310          CONTINUE
275             END IF
276          END IF
277          VALUE = SCALE*SQRTSUM )
278       END IF
279 *
280       DLANTB = VALUE
281       RETURN
282 *
283 *     End of DLANTB
284 *
285       END