1       DOUBLE PRECISION FUNCTION DLANTP( NORM, UPLO, DIAG, N, AP, WORK )
  2 *
  3 *  -- LAPACK auxiliary routine (version 3.2) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          DIAG, NORM, UPLO
 10       INTEGER            N
 11 *     ..
 12 *     .. Array Arguments ..
 13       DOUBLE PRECISION   AP( * ), WORK( * )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  DLANTP  returns the value of the one norm,  or the Frobenius norm, or
 20 *  the  infinity norm,  or the  element of  largest absolute value  of a
 21 *  triangular matrix A, supplied in packed form.
 22 *
 23 *  Description
 24 *  ===========
 25 *
 26 *  DLANTP returns the value
 27 *
 28 *     DLANTP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 29 *              (
 30 *              ( norm1(A),         NORM = '1', 'O' or 'o'
 31 *              (
 32 *              ( normI(A),         NORM = 'I' or 'i'
 33 *              (
 34 *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 35 *
 36 *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
 37 *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 38 *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
 39 *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 40 *
 41 *  Arguments
 42 *  =========
 43 *
 44 *  NORM    (input) CHARACTER*1
 45 *          Specifies the value to be returned in DLANTP as described
 46 *          above.
 47 *
 48 *  UPLO    (input) CHARACTER*1
 49 *          Specifies whether the matrix A is upper or lower triangular.
 50 *          = 'U':  Upper triangular
 51 *          = 'L':  Lower triangular
 52 *
 53 *  DIAG    (input) CHARACTER*1
 54 *          Specifies whether or not the matrix A is unit triangular.
 55 *          = 'N':  Non-unit triangular
 56 *          = 'U':  Unit triangular
 57 *
 58 *  N       (input) INTEGER
 59 *          The order of the matrix A.  N >= 0.  When N = 0, DLANTP is
 60 *          set to zero.
 61 *
 62 *  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
 63 *          The upper or lower triangular matrix A, packed columnwise in
 64 *          a linear array.  The j-th column of A is stored in the array
 65 *          AP as follows:
 66 *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 67 *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
 68 *          Note that when DIAG = 'U', the elements of the array AP
 69 *          corresponding to the diagonal elements of the matrix A are
 70 *          not referenced, but are assumed to be one.
 71 *
 72 *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
 73 *          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
 74 *          referenced.
 75 *
 76 * =====================================================================
 77 *
 78 *     .. Parameters ..
 79       DOUBLE PRECISION   ONE, ZERO
 80       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 81 *     ..
 82 *     .. Local Scalars ..
 83       LOGICAL            UDIAG
 84       INTEGER            I, J, K
 85       DOUBLE PRECISION   SCALESUMVALUE
 86 *     ..
 87 *     .. External Subroutines ..
 88       EXTERNAL           DLASSQ
 89 *     ..
 90 *     .. External Functions ..
 91       LOGICAL            LSAME
 92       EXTERNAL           LSAME
 93 *     ..
 94 *     .. Intrinsic Functions ..
 95       INTRINSIC          ABSMAXSQRT
 96 *     ..
 97 *     .. Executable Statements ..
 98 *
 99       IF( N.EQ.0 ) THEN
100          VALUE = ZERO
101       ELSE IF( LSAME( NORM, 'M' ) ) THEN
102 *
103 *        Find max(abs(A(i,j))).
104 *
105          K = 1
106          IF( LSAME( DIAG, 'U' ) ) THEN
107             VALUE = ONE
108             IF( LSAME( UPLO, 'U' ) ) THEN
109                DO 20 J = 1, N
110                   DO 10 I = K, K + J - 2
111                      VALUE = MAXVALUEABS( AP( I ) ) )
112    10             CONTINUE
113                   K = K + J
114    20          CONTINUE
115             ELSE
116                DO 40 J = 1, N
117                   DO 30 I = K + 1, K + N - J
118                      VALUE = MAXVALUEABS( AP( I ) ) )
119    30             CONTINUE
120                   K = K + N - J + 1
121    40          CONTINUE
122             END IF
123          ELSE
124             VALUE = ZERO
125             IF( LSAME( UPLO, 'U' ) ) THEN
126                DO 60 J = 1, N
127                   DO 50 I = K, K + J - 1
128                      VALUE = MAXVALUEABS( AP( I ) ) )
129    50             CONTINUE
130                   K = K + J
131    60          CONTINUE
132             ELSE
133                DO 80 J = 1, N
134                   DO 70 I = K, K + N - J
135                      VALUE = MAXVALUEABS( AP( I ) ) )
136    70             CONTINUE
137                   K = K + N - J + 1
138    80          CONTINUE
139             END IF
140          END IF
141       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
142 *
143 *        Find norm1(A).
144 *
145          VALUE = ZERO
146          K = 1
147          UDIAG = LSAME( DIAG, 'U' )
148          IF( LSAME( UPLO, 'U' ) ) THEN
149             DO 110 J = 1, N
150                IF( UDIAG ) THEN
151                   SUM = ONE
152                   DO 90 I = K, K + J - 2
153                      SUM = SUM + ABS( AP( I ) )
154    90             CONTINUE
155                ELSE
156                   SUM = ZERO
157                   DO 100 I = K, K + J - 1
158                      SUM = SUM + ABS( AP( I ) )
159   100             CONTINUE
160                END IF
161                K = K + J
162                VALUE = MAXVALUESUM )
163   110       CONTINUE
164          ELSE
165             DO 140 J = 1, N
166                IF( UDIAG ) THEN
167                   SUM = ONE
168                   DO 120 I = K + 1, K + N - J
169                      SUM = SUM + ABS( AP( I ) )
170   120             CONTINUE
171                ELSE
172                   SUM = ZERO
173                   DO 130 I = K, K + N - J
174                      SUM = SUM + ABS( AP( I ) )
175   130             CONTINUE
176                END IF
177                K = K + N - J + 1
178                VALUE = MAXVALUESUM )
179   140       CONTINUE
180          END IF
181       ELSE IF( LSAME( NORM, 'I' ) ) THEN
182 *
183 *        Find normI(A).
184 *
185          K = 1
186          IF( LSAME( UPLO, 'U' ) ) THEN
187             IF( LSAME( DIAG, 'U' ) ) THEN
188                DO 150 I = 1, N
189                   WORK( I ) = ONE
190   150          CONTINUE
191                DO 170 J = 1, N
192                   DO 160 I = 1, J - 1
193                      WORK( I ) = WORK( I ) + ABS( AP( K ) )
194                      K = K + 1
195   160             CONTINUE
196                   K = K + 1
197   170          CONTINUE
198             ELSE
199                DO 180 I = 1, N
200                   WORK( I ) = ZERO
201   180          CONTINUE
202                DO 200 J = 1, N
203                   DO 190 I = 1, J
204                      WORK( I ) = WORK( I ) + ABS( AP( K ) )
205                      K = K + 1
206   190             CONTINUE
207   200          CONTINUE
208             END IF
209          ELSE
210             IF( LSAME( DIAG, 'U' ) ) THEN
211                DO 210 I = 1, N
212                   WORK( I ) = ONE
213   210          CONTINUE
214                DO 230 J = 1, N
215                   K = K + 1
216                   DO 220 I = J + 1, N
217                      WORK( I ) = WORK( I ) + ABS( AP( K ) )
218                      K = K + 1
219   220             CONTINUE
220   230          CONTINUE
221             ELSE
222                DO 240 I = 1, N
223                   WORK( I ) = ZERO
224   240          CONTINUE
225                DO 260 J = 1, N
226                   DO 250 I = J, N
227                      WORK( I ) = WORK( I ) + ABS( AP( K ) )
228                      K = K + 1
229   250             CONTINUE
230   260          CONTINUE
231             END IF
232          END IF
233          VALUE = ZERO
234          DO 270 I = 1, N
235             VALUE = MAXVALUE, WORK( I ) )
236   270    CONTINUE
237       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
238 *
239 *        Find normF(A).
240 *
241          IF( LSAME( UPLO, 'U' ) ) THEN
242             IF( LSAME( DIAG, 'U' ) ) THEN
243                SCALE = ONE
244                SUM = N
245                K = 2
246                DO 280 J = 2, N
247                   CALL DLASSQ( J-1, AP( K ), 1SCALESUM )
248                   K = K + J
249   280          CONTINUE
250             ELSE
251                SCALE = ZERO
252                SUM = ONE
253                K = 1
254                DO 290 J = 1, N
255                   CALL DLASSQ( J, AP( K ), 1SCALESUM )
256                   K = K + J
257   290          CONTINUE
258             END IF
259          ELSE
260             IF( LSAME( DIAG, 'U' ) ) THEN
261                SCALE = ONE
262                SUM = N
263                K = 2
264                DO 300 J = 1, N - 1
265                   CALL DLASSQ( N-J, AP( K ), 1SCALESUM )
266                   K = K + N - J + 1
267   300          CONTINUE
268             ELSE
269                SCALE = ZERO
270                SUM = ONE
271                K = 1
272                DO 310 J = 1, N
273                   CALL DLASSQ( N-J+1, AP( K ), 1SCALESUM )
274                   K = K + N - J + 1
275   310          CONTINUE
276             END IF
277          END IF
278          VALUE = SCALE*SQRTSUM )
279       END IF
280 *
281       DLANTP = VALUE
282       RETURN
283 *
284 *     End of DLANTP
285 *
286       END