1       DOUBLE PRECISION FUNCTION DLANTR( NORM, UPLO, DIAG, M, N, A, LDA,
  2      $                 WORK )
  3 *
  4 *  -- LAPACK auxiliary routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          DIAG, NORM, UPLO
 11       INTEGER            LDA, M, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   A( LDA, * ), WORK( * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  DLANTR  returns the value of the one norm,  or the Frobenius norm, or
 21 *  the  infinity norm,  or the  element of  largest absolute value  of a
 22 *  trapezoidal or triangular matrix A.
 23 *
 24 *  Description
 25 *  ===========
 26 *
 27 *  DLANTR returns the value
 28 *
 29 *     DLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 30 *              (
 31 *              ( norm1(A),         NORM = '1', 'O' or 'o'
 32 *              (
 33 *              ( normI(A),         NORM = 'I' or 'i'
 34 *              (
 35 *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 36 *
 37 *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
 38 *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 39 *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
 40 *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 41 *
 42 *  Arguments
 43 *  =========
 44 *
 45 *  NORM    (input) CHARACTER*1
 46 *          Specifies the value to be returned in DLANTR as described
 47 *          above.
 48 *
 49 *  UPLO    (input) CHARACTER*1
 50 *          Specifies whether the matrix A is upper or lower trapezoidal.
 51 *          = 'U':  Upper trapezoidal
 52 *          = 'L':  Lower trapezoidal
 53 *          Note that A is triangular instead of trapezoidal if M = N.
 54 *
 55 *  DIAG    (input) CHARACTER*1
 56 *          Specifies whether or not the matrix A has unit diagonal.
 57 *          = 'N':  Non-unit diagonal
 58 *          = 'U':  Unit diagonal
 59 *
 60 *  M       (input) INTEGER
 61 *          The number of rows of the matrix A.  M >= 0, and if
 62 *          UPLO = 'U', M <= N.  When M = 0, DLANTR is set to zero.
 63 *
 64 *  N       (input) INTEGER
 65 *          The number of columns of the matrix A.  N >= 0, and if
 66 *          UPLO = 'L', N <= M.  When N = 0, DLANTR is set to zero.
 67 *
 68 *  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
 69 *          The trapezoidal matrix A (A is triangular if M = N).
 70 *          If UPLO = 'U', the leading m by n upper trapezoidal part of
 71 *          the array A contains the upper trapezoidal matrix, and the
 72 *          strictly lower triangular part of A is not referenced.
 73 *          If UPLO = 'L', the leading m by n lower trapezoidal part of
 74 *          the array A contains the lower trapezoidal matrix, and the
 75 *          strictly upper triangular part of A is not referenced.  Note
 76 *          that when DIAG = 'U', the diagonal elements of A are not
 77 *          referenced and are assumed to be one.
 78 *
 79 *  LDA     (input) INTEGER
 80 *          The leading dimension of the array A.  LDA >= max(M,1).
 81 *
 82 *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
 83 *          where LWORK >= M when NORM = 'I'; otherwise, WORK is not
 84 *          referenced.
 85 *
 86 * =====================================================================
 87 *
 88 *     .. Parameters ..
 89       DOUBLE PRECISION   ONE, ZERO
 90       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 91 *     ..
 92 *     .. Local Scalars ..
 93       LOGICAL            UDIAG
 94       INTEGER            I, J
 95       DOUBLE PRECISION   SCALESUMVALUE
 96 *     ..
 97 *     .. External Subroutines ..
 98       EXTERNAL           DLASSQ
 99 *     ..
100 *     .. External Functions ..
101       LOGICAL            LSAME
102       EXTERNAL           LSAME
103 *     ..
104 *     .. Intrinsic Functions ..
105       INTRINSIC          ABSMAXMINSQRT
106 *     ..
107 *     .. Executable Statements ..
108 *
109       IFMIN( M, N ).EQ.0 ) THEN
110          VALUE = ZERO
111       ELSE IF( LSAME( NORM, 'M' ) ) THEN
112 *
113 *        Find max(abs(A(i,j))).
114 *
115          IF( LSAME( DIAG, 'U' ) ) THEN
116             VALUE = ONE
117             IF( LSAME( UPLO, 'U' ) ) THEN
118                DO 20 J = 1, N
119                   DO 10 I = 1MIN( M, J-1 )
120                      VALUE = MAXVALUEABS( A( I, J ) ) )
121    10             CONTINUE
122    20          CONTINUE
123             ELSE
124                DO 40 J = 1, N
125                   DO 30 I = J + 1, M
126                      VALUE = MAXVALUEABS( A( I, J ) ) )
127    30             CONTINUE
128    40          CONTINUE
129             END IF
130          ELSE
131             VALUE = ZERO
132             IF( LSAME( UPLO, 'U' ) ) THEN
133                DO 60 J = 1, N
134                   DO 50 I = 1MIN( M, J )
135                      VALUE = MAXVALUEABS( A( I, J ) ) )
136    50             CONTINUE
137    60          CONTINUE
138             ELSE
139                DO 80 J = 1, N
140                   DO 70 I = J, M
141                      VALUE = MAXVALUEABS( A( I, J ) ) )
142    70             CONTINUE
143    80          CONTINUE
144             END IF
145          END IF
146       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
147 *
148 *        Find norm1(A).
149 *
150          VALUE = ZERO
151          UDIAG = LSAME( DIAG, 'U' )
152          IF( LSAME( UPLO, 'U' ) ) THEN
153             DO 110 J = 1, N
154                IF( ( UDIAG ) .AND. ( J.LE.M ) ) THEN
155                   SUM = ONE
156                   DO 90 I = 1, J - 1
157                      SUM = SUM + ABS( A( I, J ) )
158    90             CONTINUE
159                ELSE
160                   SUM = ZERO
161                   DO 100 I = 1MIN( M, J )
162                      SUM = SUM + ABS( A( I, J ) )
163   100             CONTINUE
164                END IF
165                VALUE = MAXVALUESUM )
166   110       CONTINUE
167          ELSE
168             DO 140 J = 1, N
169                IF( UDIAG ) THEN
170                   SUM = ONE
171                   DO 120 I = J + 1, M
172                      SUM = SUM + ABS( A( I, J ) )
173   120             CONTINUE
174                ELSE
175                   SUM = ZERO
176                   DO 130 I = J, M
177                      SUM = SUM + ABS( A( I, J ) )
178   130             CONTINUE
179                END IF
180                VALUE = MAXVALUESUM )
181   140       CONTINUE
182          END IF
183       ELSE IF( LSAME( NORM, 'I' ) ) THEN
184 *
185 *        Find normI(A).
186 *
187          IF( LSAME( UPLO, 'U' ) ) THEN
188             IF( LSAME( DIAG, 'U' ) ) THEN
189                DO 150 I = 1, M
190                   WORK( I ) = ONE
191   150          CONTINUE
192                DO 170 J = 1, N
193                   DO 160 I = 1MIN( M, J-1 )
194                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
195   160             CONTINUE
196   170          CONTINUE
197             ELSE
198                DO 180 I = 1, M
199                   WORK( I ) = ZERO
200   180          CONTINUE
201                DO 200 J = 1, N
202                   DO 190 I = 1MIN( M, J )
203                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
204   190             CONTINUE
205   200          CONTINUE
206             END IF
207          ELSE
208             IF( LSAME( DIAG, 'U' ) ) THEN
209                DO 210 I = 1, N
210                   WORK( I ) = ONE
211   210          CONTINUE
212                DO 220 I = N + 1, M
213                   WORK( I ) = ZERO
214   220          CONTINUE
215                DO 240 J = 1, N
216                   DO 230 I = J + 1, M
217                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
218   230             CONTINUE
219   240          CONTINUE
220             ELSE
221                DO 250 I = 1, M
222                   WORK( I ) = ZERO
223   250          CONTINUE
224                DO 270 J = 1, N
225                   DO 260 I = J, M
226                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
227   260             CONTINUE
228   270          CONTINUE
229             END IF
230          END IF
231          VALUE = ZERO
232          DO 280 I = 1, M
233             VALUE = MAXVALUE, WORK( I ) )
234   280    CONTINUE
235       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
236 *
237 *        Find normF(A).
238 *
239          IF( LSAME( UPLO, 'U' ) ) THEN
240             IF( LSAME( DIAG, 'U' ) ) THEN
241                SCALE = ONE
242                SUM = MIN( M, N )
243                DO 290 J = 2, N
244                   CALL DLASSQ( MIN( M, J-1 ), A( 1, J ), 1SCALESUM )
245   290          CONTINUE
246             ELSE
247                SCALE = ZERO
248                SUM = ONE
249                DO 300 J = 1, N
250                   CALL DLASSQ( MIN( M, J ), A( 1, J ), 1SCALESUM )
251   300          CONTINUE
252             END IF
253          ELSE
254             IF( LSAME( DIAG, 'U' ) ) THEN
255                SCALE = ONE
256                SUM = MIN( M, N )
257                DO 310 J = 1, N
258                   CALL DLASSQ( M-J, A( MIN( M, J+1 ), J ), 1SCALE,
259      $                         SUM )
260   310          CONTINUE
261             ELSE
262                SCALE = ZERO
263                SUM = ONE
264                DO 320 J = 1, N
265                   CALL DLASSQ( M-J+1, A( J, J ), 1SCALESUM )
266   320          CONTINUE
267             END IF
268          END IF
269          VALUE = SCALE*SQRTSUM )
270       END IF
271 *
272       DLANTR = VALUE
273       RETURN
274 *
275 *     End of DLANTR
276 *
277       END