1       SUBROUTINE DLARRJ( N, D, E2, IFIRST, ILAST,
  2      $                   RTOL, OFFSET, W, WERR, WORK, IWORK,
  3      $                   PIVMIN, SPDIAM, INFO )
  4 *
  5 *  -- LAPACK auxiliary routine (version 3.2.2) --
  6 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  7 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  8 *     June 2010
  9 *
 10 *     .. Scalar Arguments ..
 11       INTEGER            IFIRST, ILAST, INFO, N, OFFSET
 12       DOUBLE PRECISION   PIVMIN, RTOL, SPDIAM
 13 *     ..
 14 *     .. Array Arguments ..
 15       INTEGER            IWORK( * )
 16       DOUBLE PRECISION   D( * ), E2( * ), W( * ),
 17      $                   WERR( * ), WORK( * )
 18 *     ..
 19 *
 20 *  Purpose
 21 *  =======
 22 *
 23 *  Given the initial eigenvalue approximations of T, DLARRJ
 24 *  does  bisection to refine the eigenvalues of T,
 25 *  W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initial
 26 *  guesses for these eigenvalues are input in W, the corresponding estimate
 27 *  of the error in these guesses in WERR. During bisection, intervals
 28 *  [left, right] are maintained by storing their mid-points and
 29 *  semi-widths in the arrays W and WERR respectively.
 30 *
 31 *  Arguments
 32 *  =========
 33 *
 34 *  N       (input) INTEGER
 35 *          The order of the matrix.
 36 *
 37 *  D       (input) DOUBLE PRECISION array, dimension (N)
 38 *          The N diagonal elements of T.
 39 *
 40 *  E2      (input) DOUBLE PRECISION array, dimension (N-1)
 41 *          The Squares of the (N-1) subdiagonal elements of T.
 42 *
 43 *  IFIRST  (input) INTEGER
 44 *          The index of the first eigenvalue to be computed.
 45 *
 46 *  ILAST   (input) INTEGER
 47 *          The index of the last eigenvalue to be computed.
 48 *
 49 *  RTOL    (input) DOUBLE PRECISION
 50 *          Tolerance for the convergence of the bisection intervals.
 51 *          An interval [LEFT,RIGHT] has converged if
 52 *          RIGHT-LEFT.LT.RTOL*MAX(|LEFT|,|RIGHT|).
 53 *
 54 *  OFFSET  (input) INTEGER
 55 *          Offset for the arrays W and WERR, i.e., the IFIRST-OFFSET
 56 *          through ILAST-OFFSET elements of these arrays are to be used.
 57 *
 58 *  W       (input/output) DOUBLE PRECISION array, dimension (N)
 59 *          On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are
 60 *          estimates of the eigenvalues of L D L^T indexed IFIRST through
 61 *          ILAST.
 62 *          On output, these estimates are refined.
 63 *
 64 *  WERR    (input/output) DOUBLE PRECISION array, dimension (N)
 65 *          On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET ) are
 66 *          the errors in the estimates of the corresponding elements in W.
 67 *          On output, these errors are refined.
 68 *
 69 *  WORK    (workspace) DOUBLE PRECISION array, dimension (2*N)
 70 *          Workspace.
 71 *
 72 *  IWORK   (workspace) INTEGER array, dimension (2*N)
 73 *          Workspace.
 74 *
 75 *  PIVMIN  (input) DOUBLE PRECISION
 76 *          The minimum pivot in the Sturm sequence for T.
 77 *
 78 *  SPDIAM  (input) DOUBLE PRECISION
 79 *          The spectral diameter of T.
 80 *
 81 *  INFO    (output) INTEGER
 82 *          Error flag.
 83 *
 84 *  Further Details
 85 *  ===============
 86 *
 87 *  Based on contributions by
 88 *     Beresford Parlett, University of California, Berkeley, USA
 89 *     Jim Demmel, University of California, Berkeley, USA
 90 *     Inderjit Dhillon, University of Texas, Austin, USA
 91 *     Osni Marques, LBNL/NERSC, USA
 92 *     Christof Voemel, University of California, Berkeley, USA
 93 *
 94 *  =====================================================================
 95 *
 96 *     .. Parameters ..
 97       DOUBLE PRECISION   ZERO, ONE, TWO, HALF
 98       PARAMETER        ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
 99      $                   HALF = 0.5D0 )
100       INTEGER   MAXITR
101 *     ..
102 *     .. Local Scalars ..
103       INTEGER            CNT, I, I1, I2, II, ITER, J, K, NEXT, NINT,
104      $                   OLNINT, P, PREV, SAVI1
105       DOUBLE PRECISION   DPLUS, FAC, LEFT, MID, RIGHT, S, TMP, WIDTH
106 *
107 *     ..
108 *     .. Intrinsic Functions ..
109       INTRINSIC          ABSMAX
110 *     ..
111 *     .. Executable Statements ..
112 *
113       INFO = 0
114 *
115       MAXITR = INT( ( LOG( SPDIAM+PIVMIN )-LOG( PIVMIN ) ) /
116      $           LOG( TWO ) ) + 2
117 *
118 *     Initialize unconverged intervals in [ WORK(2*I-1), WORK(2*I) ].
119 *     The Sturm Count, Count( WORK(2*I-1) ) is arranged to be I-1, while
120 *     Count( WORK(2*I) ) is stored in IWORK( 2*I ). The integer IWORK( 2*I-1 )
121 *     for an unconverged interval is set to the index of the next unconverged
122 *     interval, and is -1 or 0 for a converged interval. Thus a linked
123 *     list of unconverged intervals is set up.
124 *
125 
126       I1 = IFIRST
127       I2 = ILAST
128 *     The number of unconverged intervals
129       NINT = 0
130 *     The last unconverged interval found
131       PREV = 0
132       DO 75 I = I1, I2
133          K = 2*I
134          II = I - OFFSET
135          LEFT = W( II ) - WERR( II )
136          MID = W(II)
137          RIGHT = W( II ) + WERR( II )
138          WIDTH = RIGHT - MID
139          TMP = MAXABS( LEFT ), ABS( RIGHT ) )
140 
141 *        The following test prevents the test of converged intervals
142          IF( WIDTH.LT.RTOL*TMP ) THEN
143 *           This interval has already converged and does not need refinement.
144 *           (Note that the gaps might change through refining the
145 *            eigenvalues, however, they can only get bigger.)
146 *           Remove it from the list.
147             IWORK( K-1 ) = -1
148 *           Make sure that I1 always points to the first unconverged interval
149             IF((I.EQ.I1).AND.(I.LT.I2)) I1 = I + 1
150             IF((PREV.GE.I1).AND.(I.LE.I2)) IWORK( 2*PREV-1 ) = I + 1
151          ELSE
152 *           unconverged interval found
153             PREV = I
154 *           Make sure that [LEFT,RIGHT] contains the desired eigenvalue
155 *
156 *           Do while( CNT(LEFT).GT.I-1 )
157 *
158             FAC = ONE
159  20         CONTINUE
160             CNT = 0
161             S = LEFT
162             DPLUS = D( 1 ) - S
163             IF( DPLUS.LT.ZERO ) CNT = CNT + 1
164             DO 30 J = 2, N
165                DPLUS = D( J ) - S - E2( J-1 )/DPLUS
166                IF( DPLUS.LT.ZERO ) CNT = CNT + 1
167  30         CONTINUE
168             IF( CNT.GT.I-1 ) THEN
169                LEFT = LEFT - WERR( II )*FAC
170                FAC = TWO*FAC
171                GO TO 20
172             END IF
173 *
174 *           Do while( CNT(RIGHT).LT.I )
175 *
176             FAC = ONE
177  50         CONTINUE
178             CNT = 0
179             S = RIGHT
180             DPLUS = D( 1 ) - S
181             IF( DPLUS.LT.ZERO ) CNT = CNT + 1
182             DO 60 J = 2, N
183                DPLUS = D( J ) - S - E2( J-1 )/DPLUS
184                IF( DPLUS.LT.ZERO ) CNT = CNT + 1
185  60         CONTINUE
186             IF( CNT.LT.I ) THEN
187                RIGHT = RIGHT + WERR( II )*FAC
188                FAC = TWO*FAC
189                GO TO 50
190             END IF
191             NINT = NINT + 1
192             IWORK( K-1 ) = I + 1
193             IWORK( K ) = CNT
194          END IF
195          WORK( K-1 ) = LEFT
196          WORK( K ) = RIGHT
197  75   CONTINUE
198 
199 
200       SAVI1 = I1
201 *
202 *     Do while( NINT.GT.0 ), i.e. there are still unconverged intervals
203 *     and while (ITER.LT.MAXITR)
204 *
205       ITER = 0
206  80   CONTINUE
207       PREV = I1 - 1
208       I = I1
209       OLNINT = NINT
210 
211       DO 100 P = 1, OLNINT
212          K = 2*I
213          II = I - OFFSET
214          NEXT = IWORK( K-1 )
215          LEFT = WORK( K-1 )
216          RIGHT = WORK( K )
217          MID = HALF*( LEFT + RIGHT )
218 
219 *        semiwidth of interval
220          WIDTH = RIGHT - MID
221          TMP = MAXABS( LEFT ), ABS( RIGHT ) )
222 
223          IF( ( WIDTH.LT.RTOL*TMP ) .OR.
224      $      (ITER.EQ.MAXITR) )THEN
225 *           reduce number of unconverged intervals
226             NINT = NINT - 1
227 *           Mark interval as converged.
228             IWORK( K-1 ) = 0
229             IF( I1.EQ.I ) THEN
230                I1 = NEXT
231             ELSE
232 *              Prev holds the last unconverged interval previously examined
233                IF(PREV.GE.I1) IWORK( 2*PREV-1 ) = NEXT
234             END IF
235             I = NEXT
236             GO TO 100
237          END IF
238          PREV = I
239 *
240 *        Perform one bisection step
241 *
242          CNT = 0
243          S = MID
244          DPLUS = D( 1 ) - S
245          IF( DPLUS.LT.ZERO ) CNT = CNT + 1
246          DO 90 J = 2, N
247             DPLUS = D( J ) - S - E2( J-1 )/DPLUS
248             IF( DPLUS.LT.ZERO ) CNT = CNT + 1
249  90      CONTINUE
250          IF( CNT.LE.I-1 ) THEN
251             WORK( K-1 ) = MID
252          ELSE
253             WORK( K ) = MID
254          END IF
255          I = NEXT
256 
257  100  CONTINUE
258       ITER = ITER + 1
259 *     do another loop if there are still unconverged intervals
260 *     However, in the last iteration, all intervals are accepted
261 *     since this is the best we can do.
262       IF( ( NINT.GT.0 ).AND.(ITER.LE.MAXITR) ) GO TO 80
263 *
264 *
265 *     At this point, all the intervals have converged
266       DO 110 I = SAVI1, ILAST
267          K = 2*I
268          II = I - OFFSET
269 *        All intervals marked by '0' have been refined.
270          IF( IWORK( K-1 ).EQ.0 ) THEN
271             W( II ) = HALF*( WORK( K-1 )+WORK( K ) )
272             WERR( II ) = WORK( K ) - W( II )
273          END IF
274  110  CONTINUE
275 *
276 
277       RETURN
278 *
279 *     End of DLARRJ
280 *
281       END