1       SUBROUTINE DLASD0( N, SQRE, D, E, U, LDU, VT, LDVT, SMLSIZ, IWORK,
  2      $                   WORK, INFO )
  3 *
  4 *  -- LAPACK auxiliary routine (version 3.2.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     June 2010
  8 *
  9 *     .. Scalar Arguments ..
 10       INTEGER            INFO, LDU, LDVT, N, SMLSIZ, SQRE
 11 *     ..
 12 *     .. Array Arguments ..
 13       INTEGER            IWORK( * )
 14       DOUBLE PRECISION   D( * ), E( * ), U( LDU, * ), VT( LDVT, * ),
 15      $                   WORK( * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  Using a divide and conquer approach, DLASD0 computes the singular
 22 *  value decomposition (SVD) of a real upper bidiagonal N-by-M
 23 *  matrix B with diagonal D and offdiagonal E, where M = N + SQRE.
 24 *  The algorithm computes orthogonal matrices U and VT such that
 25 *  B = U * S * VT. The singular values S are overwritten on D.
 26 *
 27 *  A related subroutine, DLASDA, computes only the singular values,
 28 *  and optionally, the singular vectors in compact form.
 29 *
 30 *  Arguments
 31 *  =========
 32 *
 33 *  N      (input) INTEGER
 34 *         On entry, the row dimension of the upper bidiagonal matrix.
 35 *         This is also the dimension of the main diagonal array D.
 36 *
 37 *  SQRE   (input) INTEGER
 38 *         Specifies the column dimension of the bidiagonal matrix.
 39 *         = 0: The bidiagonal matrix has column dimension M = N;
 40 *         = 1: The bidiagonal matrix has column dimension M = N+1;
 41 *
 42 *  D      (input/output) DOUBLE PRECISION array, dimension (N)
 43 *         On entry D contains the main diagonal of the bidiagonal
 44 *         matrix.
 45 *         On exit D, if INFO = 0, contains its singular values.
 46 *
 47 *  E      (input) DOUBLE PRECISION array, dimension (M-1)
 48 *         Contains the subdiagonal entries of the bidiagonal matrix.
 49 *         On exit, E has been destroyed.
 50 *
 51 *  U      (output) DOUBLE PRECISION array, dimension at least (LDQ, N)
 52 *         On exit, U contains the left singular vectors.
 53 *
 54 *  LDU    (input) INTEGER
 55 *         On entry, leading dimension of U.
 56 *
 57 *  VT     (output) DOUBLE PRECISION array, dimension at least (LDVT, M)
 58 *         On exit, VT**T contains the right singular vectors.
 59 *
 60 *  LDVT   (input) INTEGER
 61 *         On entry, leading dimension of VT.
 62 *
 63 *  SMLSIZ (input) INTEGER
 64 *         On entry, maximum size of the subproblems at the
 65 *         bottom of the computation tree.
 66 *
 67 *  IWORK  (workspace) INTEGER work array.
 68 *         Dimension must be at least (8 * N)
 69 *
 70 *  WORK   (workspace) DOUBLE PRECISION work array.
 71 *         Dimension must be at least (3 * M**2 + 2 * M)
 72 *
 73 *  INFO   (output) INTEGER
 74 *          = 0:  successful exit.
 75 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
 76 *          > 0:  if INFO = 1, a singular value did not converge
 77 *
 78 *  Further Details
 79 *  ===============
 80 *
 81 *  Based on contributions by
 82 *     Ming Gu and Huan Ren, Computer Science Division, University of
 83 *     California at Berkeley, USA
 84 *
 85 *  =====================================================================
 86 *
 87 *     .. Local Scalars ..
 88       INTEGER            I, I1, IC, IDXQ, IDXQC, IM1, INODE, ITEMP, IWK,
 89      $                   J, LF, LL, LVL, M, NCC, ND, NDB1, NDIML, NDIMR,
 90      $                   NL, NLF, NLP1, NLVL, NR, NRF, NRP1, SQREI
 91       DOUBLE PRECISION   ALPHA, BETA
 92 *     ..
 93 *     .. External Subroutines ..
 94       EXTERNAL           DLASD1, DLASDQ, DLASDT, XERBLA
 95 *     ..
 96 *     .. Executable Statements ..
 97 *
 98 *     Test the input parameters.
 99 *
100       INFO = 0
101 *
102       IF( N.LT.0 ) THEN
103          INFO = -1
104       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
105          INFO = -2
106       END IF
107 *
108       M = N + SQRE
109 *
110       IF( LDU.LT.N ) THEN
111          INFO = -6
112       ELSE IF( LDVT.LT.M ) THEN
113          INFO = -8
114       ELSE IF( SMLSIZ.LT.3 ) THEN
115          INFO = -9
116       END IF
117       IF( INFO.NE.0 ) THEN
118          CALL XERBLA( 'DLASD0'-INFO )
119          RETURN
120       END IF
121 *
122 *     If the input matrix is too small, call DLASDQ to find the SVD.
123 *
124       IF( N.LE.SMLSIZ ) THEN
125          CALL DLASDQ( 'U', SQRE, N, M, N, 0, D, E, VT, LDVT, U, LDU, U,
126      $                LDU, WORK, INFO )
127          RETURN
128       END IF
129 *
130 *     Set up the computation tree.
131 *
132       INODE = 1
133       NDIML = INODE + N
134       NDIMR = NDIML + N
135       IDXQ = NDIMR + N
136       IWK = IDXQ + N
137       CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
138      $             IWORK( NDIMR ), SMLSIZ )
139 *
140 *     For the nodes on bottom level of the tree, solve
141 *     their subproblems by DLASDQ.
142 *
143       NDB1 = ( ND+1 ) / 2
144       NCC = 0
145       DO 30 I = NDB1, ND
146 *
147 *     IC : center row of each node
148 *     NL : number of rows of left  subproblem
149 *     NR : number of rows of right subproblem
150 *     NLF: starting row of the left   subproblem
151 *     NRF: starting row of the right  subproblem
152 *
153          I1 = I - 1
154          IC = IWORK( INODE+I1 )
155          NL = IWORK( NDIML+I1 )
156          NLP1 = NL + 1
157          NR = IWORK( NDIMR+I1 )
158          NRP1 = NR + 1
159          NLF = IC - NL
160          NRF = IC + 1
161          SQREI = 1
162          CALL DLASDQ( 'U', SQREI, NL, NLP1, NL, NCC, D( NLF ), E( NLF ),
163      $                VT( NLF, NLF ), LDVT, U( NLF, NLF ), LDU,
164      $                U( NLF, NLF ), LDU, WORK, INFO )
165          IF( INFO.NE.0 ) THEN
166             RETURN
167          END IF
168          ITEMP = IDXQ + NLF - 2
169          DO 10 J = 1, NL
170             IWORK( ITEMP+J ) = J
171    10    CONTINUE
172          IF( I.EQ.ND ) THEN
173             SQREI = SQRE
174          ELSE
175             SQREI = 1
176          END IF
177          NRP1 = NR + SQREI
178          CALL DLASDQ( 'U', SQREI, NR, NRP1, NR, NCC, D( NRF ), E( NRF ),
179      $                VT( NRF, NRF ), LDVT, U( NRF, NRF ), LDU,
180      $                U( NRF, NRF ), LDU, WORK, INFO )
181          IF( INFO.NE.0 ) THEN
182             RETURN
183          END IF
184          ITEMP = IDXQ + IC
185          DO 20 J = 1, NR
186             IWORK( ITEMP+J-1 ) = J
187    20    CONTINUE
188    30 CONTINUE
189 *
190 *     Now conquer each subproblem bottom-up.
191 *
192       DO 50 LVL = NLVL, 1-1
193 *
194 *        Find the first node LF and last node LL on the
195 *        current level LVL.
196 *
197          IF( LVL.EQ.1 ) THEN
198             LF = 1
199             LL = 1
200          ELSE
201             LF = 2**( LVL-1 )
202             LL = 2*LF - 1
203          END IF
204          DO 40 I = LF, LL
205             IM1 = I - 1
206             IC = IWORK( INODE+IM1 )
207             NL = IWORK( NDIML+IM1 )
208             NR = IWORK( NDIMR+IM1 )
209             NLF = IC - NL
210             IF( ( SQRE.EQ.0 ) .AND. ( I.EQ.LL ) ) THEN
211                SQREI = SQRE
212             ELSE
213                SQREI = 1
214             END IF
215             IDXQC = IDXQ + NLF - 1
216             ALPHA = D( IC )
217             BETA = E( IC )
218             CALL DLASD1( NL, NR, SQREI, D( NLF ), ALPHA, BETA,
219      $                   U( NLF, NLF ), LDU, VT( NLF, NLF ), LDVT,
220      $                   IWORK( IDXQC ), IWORK( IWK ), WORK, INFO )
221             IF( INFO.NE.0 ) THEN
222                RETURN
223             END IF
224    40    CONTINUE
225    50 CONTINUE
226 *
227       RETURN
228 *
229 *     End of DLASD0
230 *
231       END