1       SUBROUTINE DLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
  2      $                   ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1,
  3      $                   DN2, G, TAU )
  4 *
  5 *  -- LAPACK routine (version 3.2.2)                                    --
  6 *
  7 *  -- Contributed by Osni Marques of the Lawrence Berkeley National   --
  8 *  -- Laboratory and Beresford Parlett of the Univ. of California at  --
  9 *  -- Berkeley                                                        --
 10 *  -- June 2010                                                       --
 11 *
 12 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 13 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 14 *
 15 *     .. Scalar Arguments ..
 16       LOGICAL            IEEE
 17       INTEGER            I0, ITER, N0, NDIV, NFAIL, PP, TTYPE
 18       DOUBLE PRECISION   DESIG, DMIN, DMIN1, DMIN2, DN, DN1, DN2, G,
 19      $                   QMAX, SIGMA, TAU
 20 *     ..
 21 *     .. Array Arguments ..
 22       DOUBLE PRECISION   Z( * )
 23 *     ..
 24 *
 25 *  Purpose
 26 *  =======
 27 *
 28 *  DLASQ3 checks for deflation, computes a shift (TAU) and calls dqds.
 29 *  In case of failure it changes shifts, and tries again until output
 30 *  is positive.
 31 *
 32 *  Arguments
 33 *  =========
 34 *
 35 *  I0     (input) INTEGER
 36 *         First index.
 37 *
 38 *  N0     (input/output) INTEGER
 39 *         Last index.
 40 *
 41 *  Z      (input) DOUBLE PRECISION array, dimension ( 4*N )
 42 *         Z holds the qd array.
 43 *
 44 *  PP     (input/output) INTEGER
 45 *         PP=0 for ping, PP=1 for pong.
 46 *         PP=2 indicates that flipping was applied to the Z array   
 47 *         and that the initial tests for deflation should not be 
 48 *         performed.
 49 *
 50 *  DMIN   (output) DOUBLE PRECISION
 51 *         Minimum value of d.
 52 *
 53 *  SIGMA  (output) DOUBLE PRECISION
 54 *         Sum of shifts used in current segment.
 55 *
 56 *  DESIG  (input/output) DOUBLE PRECISION
 57 *         Lower order part of SIGMA
 58 *
 59 *  QMAX   (input) DOUBLE PRECISION
 60 *         Maximum value of q.
 61 *
 62 *  NFAIL  (output) INTEGER
 63 *         Number of times shift was too big.
 64 *
 65 *  ITER   (output) INTEGER
 66 *         Number of iterations.
 67 *
 68 *  NDIV   (output) INTEGER
 69 *         Number of divisions.
 70 *
 71 *  IEEE   (input) LOGICAL
 72 *         Flag for IEEE or non IEEE arithmetic (passed to DLASQ5).
 73 *
 74 *  TTYPE  (input/output) INTEGER
 75 *         Shift type.
 76 *
 77 *  DMIN1  (input/output) DOUBLE PRECISION
 78 *
 79 *  DMIN2  (input/output) DOUBLE PRECISION
 80 *
 81 *  DN     (input/output) DOUBLE PRECISION
 82 *
 83 *  DN1    (input/output) DOUBLE PRECISION
 84 *
 85 *  DN2    (input/output) DOUBLE PRECISION
 86 *
 87 *  G      (input/output) DOUBLE PRECISION
 88 *
 89 *  TAU    (input/output) DOUBLE PRECISION
 90 *
 91 *         These are passed as arguments in order to save their values
 92 *         between calls to DLASQ3.
 93 *
 94 *  =====================================================================
 95 *
 96 *     .. Parameters ..
 97       DOUBLE PRECISION   CBIAS
 98       PARAMETER          ( CBIAS = 1.50D0 )
 99       DOUBLE PRECISION   ZERO, QURTR, HALF, ONE, TWO, HUNDRD
100       PARAMETER          ( ZERO = 0.0D0, QURTR = 0.250D0, HALF = 0.5D0,
101      $                     ONE = 1.0D0, TWO = 2.0D0, HUNDRD = 100.0D0 )
102 *     ..
103 *     .. Local Scalars ..
104       INTEGER            IPN4, J4, N0IN, NN
105       DOUBLE PRECISION   EPS, S, T, TEMP, TOL, TOL2
106 *     ..
107 *     .. External Subroutines ..
108       EXTERNAL           DLASQ4, DLASQ5, DLASQ6
109 *     ..
110 *     .. External Function ..
111       DOUBLE PRECISION   DLAMCH
112       LOGICAL            DISNAN
113       EXTERNAL           DISNAN, DLAMCH
114 *     ..
115 *     .. Intrinsic Functions ..
116       INTRINSIC          ABSMAXMINSQRT
117 *     ..
118 *     .. Executable Statements ..
119 *
120       N0IN = N0
121       EPS = DLAMCH( 'Precision' )
122       TOL = EPS*HUNDRD
123       TOL2 = TOL**2
124 *
125 *     Check for deflation.
126 *
127    10 CONTINUE
128 *
129       IF( N0.LT.I0 )
130      $   RETURN
131       IF( N0.EQ.I0 )
132      $   GO TO 20
133       NN = 4*N0 + PP
134       IF( N0.EQ.( I0+1 ) )
135      $   GO TO 40
136 *
137 *     Check whether E(N0-1) is negligible, 1 eigenvalue.
138 *
139       IF( Z( NN-5 ).GT.TOL2*( SIGMA+Z( NN-3 ) ) .AND.
140      $    Z( NN-2*PP-4 ).GT.TOL2*Z( NN-7 ) )
141      $   GO TO 30
142 *
143    20 CONTINUE
144 *
145       Z( 4*N0-3 ) = Z( 4*N0+PP-3 ) + SIGMA
146       N0 = N0 - 1
147       GO TO 10
148 *
149 *     Check  whether E(N0-2) is negligible, 2 eigenvalues.
150 *
151    30 CONTINUE
152 *
153       IF( Z( NN-9 ).GT.TOL2*SIGMA .AND.
154      $    Z( NN-2*PP-8 ).GT.TOL2*Z( NN-11 ) )
155      $   GO TO 50
156 *
157    40 CONTINUE
158 *
159       IF( Z( NN-3 ).GT.Z( NN-7 ) ) THEN
160          S = Z( NN-3 )
161          Z( NN-3 ) = Z( NN-7 )
162          Z( NN-7 ) = S
163       END IF
164       IF( Z( NN-5 ).GT.Z( NN-3 )*TOL2 ) THEN
165          T = HALF*( ( Z( NN-7 )-Z( NN-3 ) )+Z( NN-5 ) )
166          S = Z( NN-3 )*( Z( NN-5 ) / T )
167          IF( S.LE.T ) THEN
168             S = Z( NN-3 )*( Z( NN-5 ) /
169      $          ( T*( ONE+SQRT( ONE+/ T ) ) ) )
170          ELSE
171             S = Z( NN-3 )*( Z( NN-5 ) / ( T+SQRT( T )*SQRT( T+S ) ) )
172          END IF
173          T = Z( NN-7 ) + ( S+Z( NN-5 ) )
174          Z( NN-3 ) = Z( NN-3 )*( Z( NN-7 ) / T )
175          Z( NN-7 ) = T
176       END IF
177       Z( 4*N0-7 ) = Z( NN-7 ) + SIGMA
178       Z( 4*N0-3 ) = Z( NN-3 ) + SIGMA
179       N0 = N0 - 2
180       GO TO 10
181 *
182    50 CONTINUE
183       IF( PP.EQ.2 ) 
184      $   PP = 0
185 *
186 *     Reverse the qd-array, if warranted.
187 *
188       IF( DMIN.LE.ZERO .OR. N0.LT.N0IN ) THEN
189          IF( CBIAS*Z( 4*I0+PP-3 ).LT.Z( 4*N0+PP-3 ) ) THEN
190             IPN4 = 4*( I0+N0 )
191             DO 60 J4 = 4*I0, 2*( I0+N0-1 ), 4
192                TEMP = Z( J4-3 )
193                Z( J4-3 ) = Z( IPN4-J4-3 )
194                Z( IPN4-J4-3 ) = TEMP
195                TEMP = Z( J4-2 )
196                Z( J4-2 ) = Z( IPN4-J4-2 )
197                Z( IPN4-J4-2 ) = TEMP
198                TEMP = Z( J4-1 )
199                Z( J4-1 ) = Z( IPN4-J4-5 )
200                Z( IPN4-J4-5 ) = TEMP
201                TEMP = Z( J4 )
202                Z( J4 ) = Z( IPN4-J4-4 )
203                Z( IPN4-J4-4 ) = TEMP
204    60       CONTINUE
205             IF( N0-I0.LE.4 ) THEN
206                Z( 4*N0+PP-1 ) = Z( 4*I0+PP-1 )
207                Z( 4*N0-PP ) = Z( 4*I0-PP )
208             END IF
209             DMIN2 = MIN( DMIN2, Z( 4*N0+PP-1 ) )
210             Z( 4*N0+PP-1 ) = MIN( Z( 4*N0+PP-1 ), Z( 4*I0+PP-1 ),
211      $                            Z( 4*I0+PP+3 ) )
212             Z( 4*N0-PP ) = MIN( Z( 4*N0-PP ), Z( 4*I0-PP ),
213      $                          Z( 4*I0-PP+4 ) )
214             QMAX = MAX( QMAX, Z( 4*I0+PP-3 ), Z( 4*I0+PP+1 ) )
215             DMIN = -ZERO
216          END IF
217       END IF
218 *
219 *     Choose a shift.
220 *
221       CALL DLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN, DN1,
222      $             DN2, TAU, TTYPE, G )
223 *
224 *     Call dqds until DMIN > 0.
225 *
226    70 CONTINUE
227 *
228       CALL DLASQ5( I0, N0, Z, PP, TAU, DMIN, DMIN1, DMIN2, DN,
229      $             DN1, DN2, IEEE )
230 *
231       NDIV = NDIV + ( N0-I0+2 )
232       ITER = ITER + 1
233 *
234 *     Check status.
235 *
236       IF( DMIN.GE.ZERO .AND. DMIN1.GT.ZERO ) THEN
237 *
238 *        Success.
239 *
240          GO TO 90
241 *
242       ELSE IF( DMIN.LT.ZERO .AND. DMIN1.GT.ZERO .AND. 
243      $         Z( 4*( N0-1 )-PP ).LT.TOL*( SIGMA+DN1 ) .AND.
244      $         ABS( DN ).LT.TOL*SIGMA ) THEN
245 *
246 *        Convergence hidden by negative DN.
247 *
248          Z( 4*( N0-1 )-PP+2 ) = ZERO
249          DMIN = ZERO
250          GO TO 90
251       ELSE IF( DMIN.LT.ZERO ) THEN
252 *
253 *        TAU too big. Select new TAU and try again.
254 *
255          NFAIL = NFAIL + 1
256          IF( TTYPE.LT.-22 ) THEN
257 *
258 *           Failed twice. Play it safe.
259 *
260             TAU = ZERO
261          ELSE IFDMIN1.GT.ZERO ) THEN
262 *
263 *           Late failure. Gives excellent shift.
264 *
265             TAU = ( TAU+DMIN )*( ONE-TWO*EPS )
266             TTYPE = TTYPE - 11
267          ELSE
268 *
269 *           Early failure. Divide by 4.
270 *
271             TAU = QURTR*TAU
272             TTYPE = TTYPE - 12
273          END IF
274          GO TO 70
275       ELSE IF( DISNAN( DMIN ) ) THEN
276 *
277 *        NaN.
278 *
279          IF( TAU.EQ.ZERO ) THEN
280             GO TO 80
281          ELSE
282             TAU = ZERO
283             GO TO 70
284          END IF
285       ELSE
286 *            
287 *        Possible underflow. Play it safe.
288 *
289          GO TO 80
290       END IF
291 *
292 *     Risk of underflow.
293 *
294    80 CONTINUE
295       CALL DLASQ6( I0, N0, Z, PP, DMIN, DMIN1, DMIN2, DN, DN1, DN2 )
296       NDIV = NDIV + ( N0-I0+2 )
297       ITER = ITER + 1
298       TAU = ZERO
299 *
300    90 CONTINUE
301       IF( TAU.LT.SIGMA ) THEN
302          DESIG = DESIG + TAU
303          T = SIGMA + DESIG
304          DESIG = DESIG - ( T-SIGMA )
305       ELSE
306          T = SIGMA + TAU
307          DESIG = SIGMA - ( T-TAU ) + DESIG
308       END IF
309       SIGMA = T
310 *
311       RETURN
312 *
313 *     End of DLASQ3
314 *
315       END